Paleoshoreline

  • Gino Erkeling
  • Giovanni Leone
  • Ákos Kereszturi
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-9213-9_248-1

Synonyms

Definition

Features inferred to be formed by past coastal processes.

Subtypes

  1. (1)

    Oceanic (global) paleoshorelines

     
  2. (2)

    Lacustrine (local) circular, concentric paleoshorelines (paleolake strandlines) (Shoreline Features)

     

Description of Proposed Examples

The two most continuous contacts on Mars are:
  1. (1)

    The Arabia shoreline, previously named Contact 1 (Clifford and Parker 2001), which follows the gradational and fretted dichotomy boundary, as shown in Fig. 1 (Parker et al. 1989, 1993). The Arabia shoreline has been inferred from cliffs, benches, and layers located mostly along the transition topography (Martian Dichotomy) from the ancient southern highlands to the younger northern lowlands (Fig. 2). Some of the morphologies of the Arabia shoreline were interpreted to be the results of mass flow (Tanaka 1997), volcanic (Leone 2014), tectonic (Withers and Neumann 2001), or impact processes (de Villiers et al. 2010).

     
  2. (2)

    The Meridiani shoreline has...

Keywords

Equipotential Surface Dichotomy Boundary Giant Impact Ancient Ocean Wrinkle Ridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Adams KD, Wesnousky SG (1998) Shoreline processes and the age of the Lake Lahontan highstand in the Jessup embayment, Nevada. Geol. Soc. Am. Bull 110, 1318–1332CrossRefGoogle Scholar
  2. Baker VR, Strom RG, Gulick VC, Kargel JS, Komatsu G, Kale VS (1991) Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature 352(6336):589–594. doi:10.1038/352589a0CrossRefGoogle Scholar
  3. Barnhart CJ, Tulaczyk S, Asphaug E, Kraal ER, Moore JM (2005) Ice-ridge pile up and the genesis of martian “shorelines.” 36th Lunar Planet Sci Conf, abstract #1560, HoustonGoogle Scholar
  4. Carr MH, Head JW III (2003) Oceans on Mars: an assessment of the observational evidence and possible fate. J Geophys Res 108(E5):5042CrossRefGoogle Scholar
  5. Chan MA, Nicoll K, Jewell PW, Parker TJ, Okubo CH, Ormö J, Komatsu G, Bills BG, Barker D (2011) The significance of a Mars hydrograph: shoreline synthesis constrained from integrated terrestrial analog studies. 42nd Lunar Planet Sci Conf, abstract #2322, HoustonGoogle Scholar
  6. Clifford SM, Parker T (2001) The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains. Icarus 154(1):40–79. doi:10.1006/Icar.2001.6671CrossRefGoogle Scholar
  7. Currey DR (1980) Coastal geomorphology of Great Salt Lake and vicinity. Geol Miner Sur Bull 116(273):69–82Google Scholar
  8. De Pablo MÁ, Pacifici A (2008) Geomorphological evidence of water level changes in Nepenthes Mensae, Mars. Icarus 196:667–671CrossRefGoogle Scholar
  9. De Villiers G, King DT, Marzen LJ (2010) A study of candidate marine target impact craters in Arabia Terra, Mars. Meteorit Planet Sci 45:947–964CrossRefGoogle Scholar
  10. Di Achille G, Hynek BM (2010) Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat Geosci 3:459–463. doi:10.1038/ngeo891CrossRefGoogle Scholar
  11. Di Achille G, Hynek BM, Searls ML (2009) Positive identification of lake strandlines in Shalbatana Vallis, Mars. Geophys Res Lett 36(14), CiteID L14201Google Scholar
  12. Edgett KS, Parker TJ (1997) Water on early Mars: possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani. Geophys Res Lett 24:2897CrossRefGoogle Scholar
  13. Erkeling G, Reiss D, Hiesinger H, Poulet F, Carter J, Ivanov MA, Hauber E, Jaumann R (2012) Valleys, Paleolakes and possible shorelines at the Libya Montes/Isidis boundary: implications for the hydrologic evolution of Mars. Icarus 219:393–413CrossRefGoogle Scholar
  14. Fairén AG, Dohm JM, Baker VR, de Pablo MA, Ruiz J, Ferris JC, Anderson RC (2003) Episodic flood inundations of the northern plains of Mars. Icarus 165:53–67CrossRefGoogle Scholar
  15. Ghatan GJ, Zimbelman JR (2006) Paucity of candidate coastal constructional landforms along proposed shorelines on Mars: implications for a northern lowlands-filling ocean. Icarus 185:171–196CrossRefGoogle Scholar
  16. Golabek GJ, Keller T, Gerya TV, Zhu GZ, Tackley PJ, Connolly JAD (2011) Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215(1):346–357CrossRefGoogle Scholar
  17. Harrison KP (2007) Ponding in central Valles Marineris due to late-stage martian outflow channel activity. 38th Lunar Planet Sci Conf, abstract #1806, HoustonGoogle Scholar
  18. Head JW, Kreslavsky M, Hiesinger H, Ivanov M, Pratt S, Seibert N, Smith DE, Zuber MT (1998) Oceans in the past history of mars: tests for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Geophys Res Lett 25:4401–4404CrossRefGoogle Scholar
  19. Head JW, Hiesinger H, Ivanov MA, Kreslavsky MA, Pratt S, Thomson BJ (1999) Possible ancient oceans on Mars: evidence from Mars Orbiter Laser Altimeter data. Science 286:2134–2137CrossRefGoogle Scholar
  20. Hiesinger H, Head JW (1999) Shorelines on Mars: testing for their presence using Mars Orbiter Laser Altimeter (MOLA) data. Lunar Planet Sci 30, abstract #1370, HoustonGoogle Scholar
  21. Irwin RP, Zimbelman JR (2012) Morphometry of great basin pluvial shore landforms: implications for paleolake basins on Mars. J Geophys Res 117(E7), E07004. doi:10.1029/2012JE004046Google Scholar
  22. Ivanov MA, Head JW (2001) Chryse Planitia, Mars: topographic configuration, outflow channel continuity and sequence, and tests for hypothesized ancient bodies of water using Mars Orbiter Laser Altimeter (MOLA) data. J Geophys Res 106(E2):3275–3296CrossRefGoogle Scholar
  23. Ivanov MA, Hiesinger H, Erkeling G, Hielscher FJ, Reiss D (2012) Major episodes of geologic history of Isidis Planitia on Mars. Icarus 218:24–46CrossRefGoogle Scholar
  24. Kraal ER, Asphaug E, Moore JM, Lorenz RD (2006) Quantitative geomorphic modeling of Martian bedrock shorelines. J Geophys Res 111(E3), CiteID E03001Google Scholar
  25. Kreslavsky MA, Head JW (2002) Fate of outflow channel effluents in the northern lowlands of Mars: the Vastitas Borealis formation as a sublimation residue from frozen ponded bodies of water. J Geophys Res 107(E12):5121CrossRefGoogle Scholar
  26. Leone G (2014) A network of lava tubes as the origin of Labyrinthus Noctis and Valles Marineris on Mars. J Volcano Geotherm Res, doi:10.1016/j.jvolgeores.2014.01.011Google Scholar
  27. Leverington DW, Ghent RR (2004) Differential subsidence and rebound in response to changes in water loading on Mars: possible effects on the geometry of ancient shorelines. J Geophys Res 109, E01005. doi:10.1029/ 2003JE002141Google Scholar
  28. Leverington DW (2011) A volcanic origin for the outflow chanels of Mars. Key evidence and major implications. Geomorphology 132(3):51–75Google Scholar
  29. López V, Tejero R, Ruiz J, Gómez-Ortiz D (2006) The elevation range of the possible Meridiani/Arabia paleoshoreline, Mars. 37th Lunar Planet Sci Conf, abstract #1810, HoustonGoogle Scholar
  30. Malin MC, Edgett KS (1999) Oceans or seas in the Martian northern lowlands: high resolution imaging tests of proposed coastlines. Geophys Res Lett 26:3049–3052CrossRefGoogle Scholar
  31. McGowan EM, McGill GE (2006) Anomalous tilt of Isidis Planitia, Mars. Geophys Res Lett 33:L08S06. doi:10.1029/2005GL024170Google Scholar
  32. Parker TJ, Saunders RS, Schneeberger DM (1989) Transitional morphology in west Deuteronilus Mensae, Mars: implications for modification of the lowland/ upland boundary. Icarus 82:111–145CrossRefGoogle Scholar
  33. Parker TJ, Gorsline DS, Saunders RS, Pieri DC, Schneeberger DM (1993) Coastal geomorphology of the Martian northern plains. J Geophys Res 98(E6):11,061–11,078CrossRefGoogle Scholar
  34. Parker TJ, Grant JA, Franklin BJ (2010) The northern plains: a Martian oceanic basin? In: Cabrol NA, Grin EA (eds) Lakes on Mars. Elsevier, Amsterdam, pp 249–274CrossRefGoogle Scholar
  35. Perron J, Taylor M, Jerry X, Manga M, Matsuyama I, Richards MA (2007) Evidence for an ancient Martian ocean in the topography of deformed shorelines. Nature 447:840–843CrossRefGoogle Scholar
  36. Ruiz J, Fairén AG, Dohm JM, Tejero R (2004) Thermal isostasy and deformation of possible paleoshorelines on Mars. Planet Space Sci 52(14):1297–1301CrossRefGoogle Scholar
  37. Scott DH, Chapman MG, Rice JW, Dohm JM (1992) New evidence of lacustrine basins on Mars – Amazonis and Utopia Planitiae. Proc Lunar Planet Sci Conf 22:53–62. LPI, HoustonGoogle Scholar
  38. Tanaka KL (1997) Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae, Mars. J Geophys Res 102(E2):4131–4150CrossRefGoogle Scholar
  39. Tanaka KL, Joyal T, Wenker A (2000) The Isidis plains units, Mars: possible catastrophic origin, tectonic tilting, and sediment loading. Lunar Planet Sci XXXI, abstract #2023, HoustonGoogle Scholar
  40. Webb VE (2004) Putative shorelines in northern Arabia Terra, Mars. J Geophys Res 109(E9), CiteID E09010Google Scholar
  41. Weitz CM, Irwin RP, Chuang FC, Bourke MC, Crown DA (2006) Formation of a terraced fan deposit in Coprates Catena, Mars. Icarus 184:436–451CrossRefGoogle Scholar
  42. Withers P, Neumann GA (2001) Enigmatic northern plains of Mars – a network of ridges in this region opens a new tectonic window onto this planet. Nature 410(6829):651–651CrossRefGoogle Scholar
  43. Zimbelman JR, Williams SH, Irwin RP, Rivera JE, Graves L, Ghatan G (2005) Shorelines in the western United States as analogs for hypothesized shoreline features on Mars. 36th Lunar Planet Sci Conf, abstract #1733, HoustonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gino Erkeling
    • 1
  • Giovanni Leone
    • 2
  • Ákos Kereszturi
    • 3
  1. 1.Institut für PlanetologieWestfälische Wilhelms-UniversitätMünsterGermany
  2. 2.Department of Earth Sciences (Erdwissenschaften), Institute of GeophysicsSwiss Federal Institute of Technology (ETH Zurich)ZurichSwitzerland
  3. 3.Konkoly Thege Miklos Astronomical InstituteResearch Center for Astronomy and Earth SciencesBudapestHungary