Skip to main content

Lag Deposit

Encyclopedia of Planetary Landforms
  • 604 Accesses

Definition

Surface accumulation of materials of diverse origin, such as regolith, rock, and mineral particles with most being in the granule to cobble size range. Results from the removal of finer material by fluvial or aeolian processes or by matrix removal as a result of differential weathering. The type of lag present is a function of local regolith, landform, and bedrock (Eggleton et al. 2008).

Synonyms

Lag gravel

Description

Stone mantles of varying size particles are common on planetary surfaces and asteroids. These mantle materials range in size from granule to boulder size and are angular to rounded in shape. Often saltation-induced winnowing leaves a single-layer lag of granules on a finer-grained surface (Greeley et al. 2002).

Subtypes

  1. (1)

    Aeolian/fluvial lag

  2. (2)

    Sublimation lag

  3. (3)

    Weathering residuum lag

Interpretation

Substantial aeolian deflation can be inferred from the presence of erosion remnants such as inverted landforms or pedestal craters. Depletion of small...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Butt CRM, Scott KM, Cornelius M, Robertson IDM (2008) Regolith sampling for geochemical exploration. In: Scott KM, Pain CF (eds) Regolith science. CSIRO Publishing, Collingwood, pp 341–376

    Google Scholar 

  • Clark JDA (2008) Extraterrestrial regolith. In: Scott KM, Pain CF (eds) Regolith science. CSIRO Publishing, Collingwood, pp 377–407

    Google Scholar 

  • Eggleton RA, Pain CF, Scott KM (2008) Glossary of regolith terms. In: Scott KM, Pain CF (eds) Regolith science. CSIRO Publishing, Collingwood, pp 409–432

    Google Scholar 

  • Galuba GG, Denk T, Neukum G (2012) Dark Terrains on Iapetus: from the local to the global perspective and back. 43rd Lunar Planet Sci Conf, abstract #2153, Houston

    Google Scholar 

  • Greeley R, Bridges NT, Kuzmin RO, Laity JE (2002) Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. J Geophys Res 107:E1. doi:10.1029/2000JE001481

    Google Scholar 

  • Hauber E, Reiss D, Ulrich M, Preusker F, Trauthan F, Zanetti M, Hiesinger H, Jaumann R, Johansson L, Johnsson A, van Gasselt S, Olvmo M (2011) Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard. In: Balme MR (ed) Martian geomorphology. Geological Society Special Publications, 356. Geological Society Publishing House, London, pp 111–132

    Google Scholar 

  • Johnson JB, Lorenz RD (2000) Thermophysical properties of Alaskan loess: an analog material for the Martian polar layered terrain? Geophys Res Lett 27:2769–2772

    Article  Google Scholar 

  • Levrard B, Forget F, Montmessin F, Laskar J (2007) Recent formation and evolution of northern Martian polar layered deposits as inferred from a Global Climate Model. J Geophys Res 112(E6), E06012

    Google Scholar 

  • Levy JS, Head JW, Marchant DR (2011) Gullies, polygons and mantles in Martian permafrost environments: cold desert landforms and sedimentary processes during recent Martian geological history. In: Martini IP, French HM, Pérez Alberti A (eds) Ice-marginal and periglacial processes and sediments. Geological Society Special Publications, 354. Geological Society, London, pp 167–182

    Google Scholar 

  • Mabbutt JA (1977) Desert landforms. M.I.T. Press, Cambridge, 340 p

    Google Scholar 

  • Prockter L, Head JW, Pappalardo R, Greeley R, Senske D, Moore J, Denk T (1997) The distribution and origin of dark material in Galileo Regio, Ganymede: new evidence from geological relationships seen in the Galileo data. Lunar Planet Sci XXVIII:1206, Houston

    Google Scholar 

  • Prockter LM, Head JW, Pappalardo RT, Senske DA, Neukum G, Wagner R, Wolf U, Oberst J, Giese B, Moore JM, Chapman CR, Helfenstein P, Greeley R, Breneman HH, Belton MJS (1998) Dark Terrain on Ganymede: geological mapping and interpretation of Galileo Regio at high resolution. Icarus 135:317–344

    Article  Google Scholar 

  • Thomson BJ, Schultz PH (2007) The geology of the Viking Lander 2 site revisited. Icarus 191:505–523

    Article  Google Scholar 

  • Wiseman SM, Arvidson RE, Guinness EA, Ferguson RL, and the Athena Science Team (2006) Coordinated analysis of orbital and ground remote sensing data along the opportunity rover traverse from Endurance to Erebus crater. Lunar Planetary Sci XXXVII, abstract #2207, Houston

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Dixon .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Dixon, J.C. (2014). Lag Deposit. In: Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9213-9_214-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9213-9_214-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-9213-9

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lag Deposit
    Published:
    30 June 2022

    DOI: https://doi.org/10.1007/978-1-4614-9213-9_214-2

  2. Original

    Lag Deposit
    Published:
    16 June 2014

    DOI: https://doi.org/10.1007/978-1-4614-9213-9_214-1