Advertisement

Imaging of Spontaneous Nontraumatic Intracerebral Hemorrhage

  • Stephen QuinetEmail author
  • Patrick Turski
Reference work entry

Abstract

The focus of this chapter is to provide an overview of the most commonly encountered etiologies of spontaneous intracerebral hemorrhage (SICH). Specifically, the goal is to review the differential diagnosis of nontraumatic hemorrhage based on clinical presentation, imaging characteristics, and location of hemorrhage. In addition to reviewing the various potential causes of nontraumatic intracranial hemorrhage, this chapter will provide a review of the variable appearance of hemorrhage on CT and MR. An emphasis will be placed on identification and anticipation of the potential complications of acute intracranial hemorrhage.

Keywords

Spontaneous intracranial hemorrhage Nontraumatic intracranial hemorrhage Hypertensive hemorrhage Coagulopathy Cerebral amyloid angiopathy Cerebral microbleeds Cerebral microhemorrhages Nontraumatic subarachnoid hemorrhage Intracranial aneurysm Arteriovenous malformation Dural arteriovenous fistula Cavernous malformation Hemorrhagic transformation of infarct Venous thrombosis Hemorrhagic neoplasm Radiation vasculopathy Radiation microhemorrhage Radiation microangiopathy Central nervous system vasculitis 

References

  1. 1.
    Khosravani H, Mayer SA, Demchuk A, Jahromi BS, Gladstone DJ, Flaherty M, Aviv RI (2013) Emergency noninvasive angiography for acute intracerebral hemorrhage. Am J Neuroradiol 34(8):1481–1487. doi:10.3174/ajnr.A3296CrossRefPubMedGoogle Scholar
  2. 2.
    Broderick JP, Adams HP, Barsan W, Feinberg W, Feldmann E, Grotta J, Zuccarello M (1999) Guidelines for the management of spontaneous intracerebral hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke 30(4):905–915. doi:10.1161/01.STR.30.4.905CrossRefPubMedGoogle Scholar
  3. 3.
    Fischbein NJ, Wijman CAC (2010) Nontraumatic intracranial hemorrhage. Neuroimaging Clin N Am 20(4):469–492. doi:10.1016/j.nic.2010.07.003CrossRefPubMedGoogle Scholar
  4. 4.
    Wada R, Aviv RI, Fox AJ, Sahlas DJ, Gladstone DJ, Tomlinson G, Symons SP (2007) CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke 38(4):1257–1262. doi:10.1161/01.STR.0000259633.59404.f3CrossRefPubMedGoogle Scholar
  5. 5.
    Rønning P, Sorteberg W, Nakstad P, Russell D, Helseth E (2008) Aspects of intracerebral hematomas – an update. Acta Neurol Scand 118(6):347–361. doi:10.1111/j.1600-0404.2008.01023.xCrossRefPubMedGoogle Scholar
  6. 6.
    Huisman TAGM (2005) Intracranial hemorrhage: ultrasound, CT and MRI findings. Eur Radiol 15(3):434–440. doi:10.1007/s00330-004-2615-7CrossRefPubMedGoogle Scholar
  7. 7.
    Gomori JM, Grossman RI (1988) Mechanisms responsible for the MR appearance and evolution of intracranial hemorrhage. Radiographics 8(3):427–440. doi:10.1148/radiographics.8.3.3380989CrossRefPubMedGoogle Scholar
  8. 8.
    Barkovich AJ, Atlas SW (1988) Magnetic resonance imaging of intracranial hemorrhage. Radiol Clin North Am 26(4):801–820PubMedGoogle Scholar
  9. 9.
    Silvera S, Oppenheim C, Touzé E, Ducreux D, Page P, Domigo V, Meder J-F (2005) Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. Am J Neuroradiol 26(2):236–241PubMedGoogle Scholar
  10. 10.
    Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy in the elderly. Ann Neurol 70(6):871–880. doi:10.1002/ana.22516PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Chao CP, Kotsenas AL, Broderick DF (2006) Cerebral amyloid angiopathy: CT and MR imaging findings. Radiographics 26(5):1517–1531. doi:10.1148/rg.265055090CrossRefPubMedGoogle Scholar
  12. 12.
    Haacke EM, DelProposto ZS, Chaturvedi S, Sehgal V, Tenzer M, Neelavalli J, Kido D (2007) Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. Am J Neuroradiol 28(2):316–317PubMedGoogle Scholar
  13. 13.
    Wang J, Gong X (2011) Superficial siderosis of the central nervous system: MR findings with susceptibility-weighted imaging. Clin Imaging 35(3):217–221. doi:10.1016/j.clinimag.2010.06.003CrossRefPubMedGoogle Scholar
  14. 14.
    Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C, Kirsch WM (2010) Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 119(3):291–302. doi:10.1007/s00401-009-0615-zPubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29(5):1433–1449. doi:10.1148/rg.295095034PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Goos JDC, van der Flier WM, Knol DL, Pouwels PJW, Scheltens P, Barkhof F, Wattjes MP (2011) Clinical relevance of improved microbleed detection by susceptibility-weighted magnetic resonance imaging. Stroke 42(7):1894–1900. doi:10.1161/STROKEAHA.110.599837CrossRefPubMedGoogle Scholar
  17. 17.
    Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng Y-CN (2008) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 30(1):19–30. doi:10.3174/ajnr.A1400PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Mittal S, Wu Z, Neelavalli J, Haacke EM (2008) Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 30(2):232–252. doi:10.3174/ajnr.A1461CrossRefGoogle Scholar
  19. 19.
    Barnes SRS, Haacke EM (2009) Susceptibility-weighted imaging: clinical angiographic applications. Magn Reson Imaging Clin N Am 17(1):47–61. doi:10.1016/j.mric.2008.12.002PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Schweser F, Deistung A, Lehr BW, Reichenbach JR (2010) Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys 37(10):5165. doi:10.1118/1.3481505CrossRefPubMedGoogle Scholar
  21. 21.
    Noguchi K, Seto H, Kamisaki Y, Tomizawa G, Toyoshima S, Watanabe N (2000) Comparison of fluid-attenuated inversion-recovery MR imaging with CT in a simulated model of acute subarachnoid hemorrhage. Am J Neuroradiol 21(5):923–927PubMedGoogle Scholar
  22. 22.
    Papke K, Kuhl CK, Fruth M, Haupt C, Schlunz-Hendann M, Sauner D, Brassel F (2007) Intracranial aneurysms: role of multidetector CT angiography in diagnosis and endovascular therapy planning. Radiology 244(2):532–540. doi:10.1148/radiol.2442060394CrossRefPubMedGoogle Scholar
  23. 23.
    McKinney AM, Palmer CS, Truwit CL, Karagulle A, Teksam M (2008) Detection of aneurysms by 64-section multidetector CT angiography in patients acutely suspected of having an intracranial aneurysm and comparison with digital subtraction and 3D rotational angiography. Am J Neuroradiol 29(3):594–602. doi:10.3174/ajnr.A0848CrossRefPubMedGoogle Scholar
  24. 24.
    Yoon DY, Lim KJ, Choi CS, Cho BM, Oh SM, Chang SK (2007) Detection and characterization of intracranial aneurysms with 16-channel multidetector row CT angiography: a prospective comparison of volume-rendered images and digital subtraction angiography. Am J Neuroradiol 28(1):60–67PubMedGoogle Scholar
  25. 25.
    Villablanca JP, Duckwiler GR, Jahan R, Tateshima S, Martin NA, Frazee J, Vinuela FV (2013) Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: growth and rupture incidence and correlation with epidemiologic risk factors. Radiology 269(1):258–265. doi:10.1148/radiol.13121188CrossRefPubMedGoogle Scholar
  26. 26.
    Wermer MJH, van der Schaaf IC, Algra A, Rinkel GJE (2007) Risk of rupture of unruptured intracranial aneurysms in relation to patient and aneurysm characteristics: an updated meta-analysis. Stroke 38(4):1404–1410. doi:10.1161/01.STR.0000260955.51401.cdCrossRefPubMedGoogle Scholar
  27. 27.
    Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, International Study of Unruptured Intracranial Aneurysms Investigators (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362(9378):103–110CrossRefPubMedGoogle Scholar
  28. 28.
    Wiebers DO, Piepgras DG, Meyer FB, Kallmes DF, Meissner I, Atkinson JL, Brown RD Jr (2004) Pathogenesis, natural history, and treatment of unruptured intracranial aneurysms. In: Mayo clinic proceedings, vol 79. Elsevier, pp 1572–1583. Retrieved from http://www.sciencedirect.com/science/article/pii/S0025619611618685
  29. 29.
    Etminan N, Beseoglu K, Barrow DL, Bederson J, Brown RD, Connolly ES, Macdonald RL (2014) Multidisciplinary consensus on assessment of unruptured intracranial aneurysms: proposal of an international research group. Stroke 45(5):1523–1530. doi:10.1161/STROKEAHA.114.004519CrossRefPubMedGoogle Scholar
  30. 30.
    Mullan S, Mojtahedi S, Johnson DL, Macdonald RL (1996) Embryological basis of some aspects of cerebral vascular fistulas and malformations. J Neurosurg 85(1):1–8CrossRefPubMedGoogle Scholar
  31. 31.
    Gandhi D, Chen J, Pearl M, Huang J, Gemmete JJ, Kathuria S (2012) Intracranial dural arteriovenous fistulas: classification, imaging findings, and treatment. Am J Neuroradiol 33(6):1007–1013. doi:10.3174/ajnr.A2798CrossRefPubMedGoogle Scholar
  32. 32.
    Sliker CW (2008) Blunt cerebrovascular injuries: imaging with multidetector CT angiography. Radiographics 28(6):1689–1708. doi:10.1148/rg.286085521CrossRefPubMedGoogle Scholar
  33. 33.
    Wilson CB (1992) Cryptic vascular malformations. Clin Neurosurg 38:49–84PubMedGoogle Scholar
  34. 34.
    De Souza JM, Domingues RC, Cruz LCH, Domingues FS, Iasbeck T, Gasparetto EL (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with T2-weighted fast spin-echo and gradient-echo sequences. Am J Neuroradiol 29(1):154–158. doi:10.3174/ajnr.A0748CrossRefPubMedGoogle Scholar
  35. 35.
    Perrini P, Lanzino G (2006) The association of venous developmental anomalies and cavernous malformations: pathophysiological, diagnostic, and surgical considerations. Neurosurg Focus 21(1):e5PubMedGoogle Scholar
  36. 36.
    Takasugi M, Fujii S, Shinohara Y, Kaminou T, Watanabe T, Ogawa T (2013) Parenchymal hypointense foci associated with developmental venous anomalies: evaluation by phase-sensitive MR imaging at 3T. Am J Neuroradiol 34(10):1940–1944. doi:10.3174/ajnr.A3495CrossRefPubMedGoogle Scholar
  37. 37.
    Smith SD, Eskey CJ (2011) Hemorrhagic stroke. Radiol Clin North Am 49(1):27–45. doi:10.1016/j.rcl.2010.07.011CrossRefPubMedGoogle Scholar
  38. 38.
    Hom J, Dankbaar JW, Soares BP, Schneider T, Cheng S-C, Bredno J, Wintermark M (2010) Blood–brain barrier permeability assessed by perfusion CT predicts symptomatic hemorrhagic transformation and malignant edema in acute ischemic stroke. Am J Neuroradiol. doi:10.3174/ajnr.A2244Google Scholar
  39. 39.
    Jain AR, Jain M, Kanthala AR, Damania D, Stead LG, Wang HZ, Jahromi BS (2013) Association of CT perfusion parameters with hemorrhagic transformation in acute ischemic stroke. Am J Neuroradiol 34(10):1895–1900. doi:10.3174/ajnr.A3502CrossRefPubMedGoogle Scholar
  40. 40.
    Warach S (2004) Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood–brain barrier disruption. Stroke 35(11_Suppl_1):2659–2661. doi:10.1161/01.STR.0000144051.32131.09CrossRefPubMedGoogle Scholar
  41. 41.
    Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Machnig T (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359(13):1317–1329CrossRefPubMedGoogle Scholar
  42. 42.
    Ozsvath RR, Casey SO, Lustrin ES, Alberico RA, Hassankhani A, Patel M (1997) Cerebral venography: comparison of CT and MR projection venography. AJR Am J Roentgenol 169(6):1699–1707CrossRefPubMedGoogle Scholar
  43. 43.
    Atlas SW, Grossman RI, Gomori JM, Hackney DB, Goldberg HI, Zimmerman RA, Bilaniuk LT (1987) Hemorrhagic intracranial malignant neoplasms: spin-echo MR imaging. Radiology 164(1):71–77. doi:10.1148/radiology.164.1.3588929CrossRefPubMedGoogle Scholar
  44. 44.
    Koike S, Aida N, Hata M, Fujita K, Ozawa Y, Inoue T (2004) Asymptomatic radiation-induced telangiectasia in children after cranial irradiation: frequency, latency, and dose relation. Radiology 230(1):93–99. doi:10.1148/radiol.2301021143CrossRefPubMedGoogle Scholar
  45. 45.
    Rabin BM, Meyer JR, Berlin JW, Marymount MH, Palka PS, Russell EJ (1996) Radiation-induced changes in the central nervous system and head and neck. Radiographics 16(5):1055–1072. doi:10.1148/radiographics.16.5.8888390CrossRefPubMedGoogle Scholar
  46. 46.
    Jain R, Robertson PL, Gandhi D, Gujar SK, Muraszko KM, Gebarski S (2005) Radiation-induced cavernomas of the brain. Am J Neuroradiol 26(5):1158–1162PubMedGoogle Scholar
  47. 47.
    Blitstein MK, Tung GA (2007) MRI of cerebral microhemorrhages. Am J Roentgenol 189(3):720–725. doi:10.2214/AJR.07.2249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Radiology, School of Medicine and Public HealthClinical Science Center, University of WisconsinMadisonUSA

Personalised recommendations