Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Transmission-blocking Immunity in Malaria

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_147-1

Plasmodium Gametocytes and Infectivity

Plasmodium gametocytes develop from asexual parasites and are the only parasite life-stage infective to mosquitoes. The likelihood of onward transmission to mosquitoes and the proportion of mosquitoes that are infected by a gametocyte carrier is positively associated with gametocyte density (Churcher et al. 2013; Da et al. 2015; Kiattibutr et al. 2017). In P. vivax, gametocyte generation begins early during infection with gametocytes appearing in the bloodstream 2–3 days after the first asexual parasites and typically disappearing within 3 days after asexual infections are cleared (Bousema and Drakeley 2011). As a consequence, P. vivax gametocyte density is strongly associated with total parasite density (Koepfli et al. 2015; McCarthy et al. 2013; Tadesse et al. 2018), and there is a strong positive association between total parasite density and the likelihood that mosquitoes become infected when feeding on an infected individual (Kiattibutr et...

This is a preview of subscription content, log in to check access.

References

  1. Baird JK, et al. Onset of clinical immunity to Plasmodium falciparum among Javanese migrants to Indonesian Papua. Ann Trop Med Parasitol. 2003;97:557–64.CrossRefPubMedGoogle Scholar
  2. Barr PJ, et al. Recombinant Pfs25 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in experimental animals. J Exp Med. 1991;174:1203–8.CrossRefPubMedGoogle Scholar
  3. Beshir KB, et al. Residual Plasmodium falciparum parasitemia in Kenyan children after artemisinin-combination therapy is associated with increased transmission to mosquitoes and parasite recurrence. J Infect Dis. 2013;208:2017–24.  https://doi.org/10.1093/infdis/jit431.CrossRefPubMedCentralPubMedGoogle Scholar
  4. Blagborough AM, et al. Transmission blocking potency and immunogenicity of a plant-produced Pvs25-based subunit vaccine against Plasmodium vivax. Vaccine. 2016;34:3252–9.  https://doi.org/10.1016/j.vaccine.2016.05.007.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Boudin C, et al. Plasmodium falciparum transmission blocking immunity under conditions of low and high endemicity in Cameroon. Parasite Immunol. 2004;26:105–10.CrossRefPubMedGoogle Scholar
  6. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011;24:377–410.  https://doi.org/10.1128/CMR.00051-10.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Bousema JT, et al. Rapid onset of transmission-reducing antibodies in javanese migrants exposed to malaria in papua, indonesia. Am J Trop Med Hyg. 2006;74:425–31.PubMedGoogle Scholar
  8. Bousema JT, et al. A longitudinal study of immune responses to Plasmodium falciparum sexual stage antigens in Tanzanian adults. Parasite Immunol. 2007;29:309–17.CrossRefPubMedGoogle Scholar
  9. Bousema T, et al. The dynamics of naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs230 & Pfs48/45 in a low endemic area in Tanzania. PLoS One. 2010;5:e14114.  https://doi.org/10.1371/journal.pone.0014114.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Bousema T, et al. Human immune responses that reduce the transmission of Plasmodium falciparum in African populations. Int J Parasitol. 2011;41:293–300.  https://doi.org/10.1016/j.ijpara.2010.09.008.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Bousema T, Churcher TS, Morlais I, Dinglasan RR. Can field-based mosquito feeding assays be used for evaluating transmission-blocking interventions? Trends Parasitol. 2013;29:53–9.  https://doi.org/10.1016/j.pt.2012.11.004.CrossRefPubMedGoogle Scholar
  12. Carter R, Gwadz RW, McAuliffe FM. Plasmodium gallinaceum: transmission-blocking immunity in chickens. I. Comparative immunogenicity of gametocyte- and gamete-containing preparations. Exp Parasitol. 1979;47:185–93.CrossRefPubMedGoogle Scholar
  13. Chowdhury DR, Angov E, Kariuki T, Kumar N. A potent malaria transmission blocking vaccine based on codon harmonized full length Pfs48/45 expressed in Escherichia coli. PLoS One. 2009;4:e6352.  https://doi.org/10.1371/journal.pone.0006352.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Churcher TS, et al. Predicting mosquito infection from Plasmodium falciparum gametocyte density and estimating the reservoir of infection. Elife. 2013;2:e00626.  https://doi.org/10.7554/eLife.00626.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Da DF, et al. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol. 2015;149:74–83.  https://doi.org/10.1016/j.exppara.2014.12.010.CrossRefPubMedGoogle Scholar
  16. Dinko B, King E, Targett GA, Sutherland CJ. Antibody responses to surface antigens of Plasmodium falciparum gametocyte-infected erythrocytes and their relation to gametocytaemia. Parasite Immunol. 2016;38:352–64.  https://doi.org/10.1111/pim.12323.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Drakeley CJ, et al. Parasite infectivity and immunity to Plasmodium falciparum gametocytes in Gambian children. Parasite Immunol. 2004;26:159–65.CrossRefPubMedGoogle Scholar
  18. Drakeley CJ, et al. Transmission-reducing immunity is inversely related to age in Plasmodium falciparum gametocyte carriers. Parasite Immunol. 2006a;28:185–90.CrossRefPubMedGoogle Scholar
  19. Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GA. The epidemiology of Plasmodium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 2006b;22:424–30.CrossRefPubMedGoogle Scholar
  20. Duffy PE, Kaslow DC. A novel malaria protein, Pfs28, and Pfs25 are genetically linked and synergistic as falciparum malaria transmission-blocking vaccines. Infect Immun. 1997;65:1109–13.PubMedCentralPubMedGoogle Scholar
  21. Eichner M, et al. Genesis, sequestration and survival of Plasmodium falciparum gametocytes: parameter estimates from fitting a model to malariatherapy data. Trans R Soc Trop Med Hyg. 2001;95:497–501.CrossRefPubMedGoogle Scholar
  22. Eksi S, et al. Malaria transmission-blocking antigen, Pfs230, mediates human red blood cell binding to exflagellating male parasites and oocyst production. Mol Microbiol. 2006;61:991–8.  https://doi.org/10.1111/j.1365-2958.2006.05284.x.CrossRefPubMedGoogle Scholar
  23. Farrance CE, et al. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum. Clin Vaccine Immunol. 2011;18:1351–7.  https://doi.org/10.1128/CVI.05105-11.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Felger I, et al. The dynamics of natural Plasmodium falciparum infections. PLoS One. 2012;7:e45542.  https://doi.org/10.1371/journal.pone.0045542.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Filipe JA, Riley EM, Drakeley CJ, Sutherland CJ, Ghani AC. Determination of the processes driving the acquisition of immunity to malaria using a mathematical transmission model. PLoS Comput Biol. 2007;3:e255.  https://doi.org/10.1371/journal.pcbi.0030255.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Gaye A, et al. Infectiousness of the human population to Anopheles arabiensis by direct skin feeding in an area hypoendemic for malaria in Senegal. Am J Trop Med Hyg. 2015;92:648–52.  https://doi.org/10.4269/ajtmh.14-0402.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Goncalves BP, et al. Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nat Commun. 2017;8:1133.  https://doi.org/10.1038/s41467-017-01270-4.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Graves PM, Carter R, Burkot TR, Quakyi IA, Kumar N. Antibodies to Plasmodium falciparum gamete surface antigens in Papua New Guinea sera. Parasite Immunol. 1988;10:209–18.CrossRefPubMedGoogle Scholar
  29. Gwadz RW. Successful immunization against the sexual stages of Plasmodium gallinaceum. Science. 1976;193:1150–1.CrossRefPubMedGoogle Scholar
  30. Healer J, et al. Complement-mediated lysis of Plasmodium falciparum gametes by malaria-immune human sera is associated with antibodies to the gamete surface antigen Pfs230. Infect Immun. 1997;65:3017–23.PubMedCentralPubMedGoogle Scholar
  31. Healer J, McGuinness D, Carter R, Riley E. Transmission-blocking immunity to Plasmodium falciparum in malaria-immune individuals is associated with antibodies to the gamete surface protein Pfs230. Parasitology. 1999;119(Pt 5):425–33.CrossRefPubMedGoogle Scholar
  32. Joice R, et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci Transl Med. 2014;6:244re245.  https://doi.org/10.1126/scitranslmed.3008882.CrossRefGoogle Scholar
  33. Jones RM, et al. A plant-produced Pfs25 VLP malaria vaccine candidate induces persistent transmission blocking antibodies against Plasmodium falciparum in immunized mice. PLoS One. 2013;8:e79538.  https://doi.org/10.1371/journal.pone.0079538.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Jones RM, et al. A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses. Hum Vaccin Immunother. 2015;11:124–32.  https://doi.org/10.4161/hv.34366.CrossRefPubMedGoogle Scholar
  35. Kafsack BF, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014;507:248–52.  https://doi.org/10.1038/nature12920.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Kapulu MC, et al. Comparative assessment of transmission-blocking vaccine candidates against Plasmodium falciparum. Sci Rep. 2015;5:11193.  https://doi.org/10.1038/srep11193.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Kiattibutr K, et al. Infectivity of symptomatic and asymptomatic Plasmodium vivax infections to a Southeast Asian vector, Anopheles dirus. Int J Parasitol. 2017;47:163–70.  https://doi.org/10.1016/j.ijpara.2016.10.006.CrossRefPubMedGoogle Scholar
  38. Koepfli C, et al. Blood-stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua New Guinea. PLoS One. 2015;10:e0126747.  https://doi.org/10.1371/journal.pone.0126747.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Li Y, et al. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology. Sci Rep. 2016;6:18848.  https://doi.org/10.1038/srep18848.CrossRefPubMedCentralPubMedGoogle Scholar
  40. McCarthy JS, et al. Experimentally induced blood-stage Plasmodium vivax infection in healthy volunteers. J Infect Dis. 2013;208:1688–94.  https://doi.org/10.1093/infdis/jit394.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Mendis KN, David PH, Carter R. Human immune responses against sexual stages of malaria parasites: considerations for malaria vaccines. Int J Parasitol. 1990;20:497–502.CrossRefPubMedGoogle Scholar
  42. Miao J, et al. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLoS Pathog. 2013;9:e1003268.  https://doi.org/10.1371/journal.ppat.1003268.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Miura K, et al. Functional comparison of Plasmodium falciparum transmission-blocking vaccine candidates by the standard membrane-feeding assay. Infect Immun. 2013;81:4377–82.  https://doi.org/10.1128/IAI.01056-13.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Muirhead-Thomson RC. Factors determining the true reservoir of infection of Plasmodium falciparum and Wuchereria bancrofti in a West African village. Trans R Soc Trop Med Hyg. 1954a;48:208–25.CrossRefPubMedGoogle Scholar
  45. Muirhead-Thomson RC. Low gametocyte thresholds of infection of Anopheles with Plasmodium falciparum; a significant factor in malaria epidemiology. Br Med J. 1954b;4853:68–70.CrossRefGoogle Scholar
  46. Muirhead-Thomson RC. The malarial infectivity of an African village population to mosquitoes (Anopheles gambiae); a random xenodiagnostic survey. Am J Trop Med Hyg. 1957;6:971–9.CrossRefPubMedGoogle Scholar
  47. Mulder B, et al. Plasmodium falciparum: membrane feeding assays and competition ELISAs for the measurement of transmission reduction in sera from Cameroon. Exp Parasitol. 1999;92:81–6.CrossRefPubMedGoogle Scholar
  48. Ouedraogo AL, et al. Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infectious reservoir in an area of seasonal transmission. PLoS One. 2009;4:e8410.  https://doi.org/10.1371/journal.pone.0008410.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Ouedraogo AL, et al. The plasticity of Plasmodium falciparum gametocytaemia in relation to age in Burkina Faso. Malar J. 2010;9:281.  https://doi.org/10.1186/1475-2875-9-281.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Ouedraogo AL, et al. Naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs48/45 and Pfs230 in an area of seasonal transmission. Infect Immun. 2011;79:4957–64.  https://doi.org/10.1128/IAI.05288-11.CrossRefPubMedCentralPubMedGoogle Scholar
  51. Ouedraogo AL, et al. Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. J Infect Dis. 2016;213:90–9.  https://doi.org/10.1093/infdis/jiv370.CrossRefPubMedGoogle Scholar
  52. Ouedraogo, AL, et al. Modeling the impact of Plasmodium falciparum sexual stage immunity on the composition and dynamics of the human infectious reservoir for malaria in natural settings. Under Rev. (In preparation)Google Scholar
  53. Outchkourov NS, et al. Correctly folded Pfs48/45 protein of Plasmodium falciparum elicits malaria transmission-blocking immunity in mice. Proc Natl Acad Sci U S A. 2008;105:4301–5.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Piper KP, Hayward RE, Cox MJ, Day KP. Malaria transmission and Naturally acquired immunity to PfEMP-1. Infect Immun. 1999;67:6369–74.PubMedCentralPubMedGoogle Scholar
  55. Pradel G. Proteins of the malaria parasite sexual stages: expression, function and potential for transmission blocking strategies. Parasitology. 2007;134:1911–29.  https://doi.org/10.1017/S0031182007003381.CrossRefPubMedGoogle Scholar
  56. Premawansa S, et al. Plasmodium falciparum malaria transmission-blocking immunity under conditions of low endemicity as in Sri Lanka. Parasite Immunol. 1994;16:35–42.CrossRefPubMedGoogle Scholar
  57. Ramsey JM, Salinas E, Rodriguez MH. Acquired transmission-blocking immunity to Plasmodium vivax in a population of southern coastal Mexico. Am J Trop Med Hyg. 1996;54:458–63.CrossRefPubMedGoogle Scholar
  58. Rener J, Graves PM, Carter R, Williams JL, Burkot TR. Target antigens of transmission-blocking immunity on gametes of Plasmodium falciparum. J Exp Med. 1983;158:976–81.CrossRefPubMedGoogle Scholar
  59. Reuling IJ, et al. A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model. Elife. 2018;7: e31549.  https//doi.org/10.7554/eLife.31549.
  60. Roeffen W, et al. Transmission blocking immunity as observed in a feeder system and serological reactivity to Pfs 48/45 and Pfs230 in field sera. Mem Inst Oswaldo Cruz. 1994;89(Suppl 2):13–5.CrossRefPubMedGoogle Scholar
  61. Roeffen W, et al. Transmission blockade of Plasmodium falciparum malaria by anti-Pfs230-specific antibodies is isotype dependent. Infect Immun. 1995a;63:467–71.PubMedCentralPubMedGoogle Scholar
  62. Roeffen W, et al. A comparison of transmission-blocking activity with reactivity in a Plasmodium falciparum 48/45-kD molecule-specific competition enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1995b;52:60–5.CrossRefPubMedGoogle Scholar
  63. Roeffen W, et al. Association between anti-Pfs48/45 reactivity and P. falciparum transmission-blocking activity in sera from Cameroon. Parasite Immunol. 1996;18:103–9.CrossRefPubMedGoogle Scholar
  64. Rogers NJ, Hall BS, Obiero J, Targett GA, Sutherland CJ. A model for sequestration of the transmission stages of Plasmodium falciparum: adhesion of gametocyte-infected erythrocytes to human bone marrow cells. Infect Immun. 2000;68:3455–62.CrossRefPubMedCentralPubMedGoogle Scholar
  65. Rono MK, et al. Adaptation of Plasmodium falciparum to its transmission environment. Nat Ecol Evol. 2017;2:377.  https://doi.org/10.1038/s41559-017-0419-9.CrossRefPubMedGoogle Scholar
  66. Saeed M, et al. Plasmodium falciparum antigens on the surface of the gametocyte-infected erythrocyte. PLoS One. 2008;3:e2280.  https://doi.org/10.1371/journal.pone.0002280.CrossRefPubMedCentralPubMedGoogle Scholar
  67. Schneider P, et al. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007;76:470–4.PubMedGoogle Scholar
  68. Singh SK, et al. A Plasmodium falciparum 48/45 single epitope R0.6C subunit protein elicits high levels of transmission blocking antibodies. Vaccine. 2015;33:1981–6.  https://doi.org/10.1016/j.vaccine.2015.02.040.CrossRefPubMedGoogle Scholar
  69. Skinner J, et al. Plasmodium falciparum gametocyte-specific antibody profiling reveals boosting through natural infection and identifies potential markers of gametocyte exposure. Infect Immun. 2015;83:4229–36.  https://doi.org/10.1128/IAI.00644-15.CrossRefPubMedCentralPubMedGoogle Scholar
  70. Smalley ME, Sinden RE. Plasmodium falciparum gametocytes: their longevity and infectivity. Parasitology. 1977;74:1–8.CrossRefPubMedGoogle Scholar
  71. Smalley ME, Brown J, Bassett NM. The rate of production of Plasmodium falciparum gametocytes during natural infections. Trans R Soc Trop Med Hyg. 1981;75:318–9.CrossRefPubMedGoogle Scholar
  72. Smith JD, et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell. 1995;82:101–10.CrossRefPubMedCentralPubMedGoogle Scholar
  73. Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5:e42.  https://doi.org/10.1371/journal.pbio.0050042.CrossRefPubMedCentralPubMedGoogle Scholar
  74. Stone WJ, et al. A scalable assessment of Plasmodium falciparum transmission in the standard membrane-feeding assay, using transgenic parasites expressing green fluorescent protein-luciferase. J Infect Dis. 2014;210:1456–63.  https://doi.org/10.1093/infdis/jiu271.CrossRefPubMedGoogle Scholar
  75. Stone WJ, et al. Naturally acquired immunity to sexual stage P. falciparum parasites. Parasitology. 2016;143:187–98.  https://doi.org/10.1017/S0031182015001341.CrossRefPubMedGoogle Scholar
  76. Stone, WJ, et al. Unravelling the immune signature of Plasmodium falciparum transmission reducing immunity. Nat Commun. 2018;9:558.  https://doi.org/10.1038/s41467-017-02646-2.
  77. Struik SS, Riley EM. Does malaria suffer from lack of memory? Immunol Rev. 2004;201:268–90.CrossRefPubMedGoogle Scholar
  78. Sutherland CJ. Surface antigens of Plasmodium falciparum gametocytes – a new class of transmission-blocking vaccine targets? Mol Biochem Parasitol. 2009;166:93–8.  https://doi.org/10.1016/j.molbiopara.2009.03.007.CrossRefPubMedGoogle Scholar
  79. Tachibana M, et al. Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate. Vaccine. 2012;30:1807–12.  https://doi.org/10.1016/j.vaccine.2012.01.003.CrossRefPubMedGoogle Scholar
  80. Tachibana M, et al. Plasmodium vivax gametocyte proteins, Pvs48/45 and Pvs47, induce transmission-reducing antibodies by DNA immunization. Vaccine. 2015;33:1901–8.  https://doi.org/10.1016/j.vaccine.2015.03.008.CrossRefPubMedGoogle Scholar
  81. Tadesse FG, et al. The relative contribution of symptomatic and asymptomatic Plasmodium vivax and Plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in Ethiopia. Clin Infect Dis. 2018.  https://doi.org/10.1093/cid/cix1123.
  82. Tonwong N, et al. Natural infection of Plasmodium falciparum induces inhibitory antibodies against gametocyte development in human hosts. Jpn J Infect Dis. 2012;65:152–6.PubMedGoogle Scholar
  83. Turner L, et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature. 2013;498:502–5.  https://doi.org/10.1038/nature12216.CrossRefPubMedCentralPubMedGoogle Scholar
  84. van der Kolk M, de Vlas SJ, Sauerwein RW. Reduction and enhancement of Plasmodium falciparum transmission by endemic human sera. Int J Parasitol. 2006;36:1091–5.CrossRefPubMedGoogle Scholar
  85. van Dijk MR, et al. A central role for P48/45 in malaria parasite male gamete fertility. Cell. 2001;104:153–64.CrossRefPubMedGoogle Scholar
  86. Vermeulen AN, et al. Sequential expression of antigens on sexual stages of Plasmodium falciparum accessible to transmission-blocking antibodies in the mosquito. J Exp Med. 1985;162:1460–76.CrossRefPubMedGoogle Scholar
  87. Williamson KC. Pfs230: from malaria transmission-blocking vaccine candidate toward function. Parasite Immunol. 2003;25:351–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Disease ModelingBellevueUSA
  2. 2.Radboud UMCNijmegenThe Netherlands