Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Clinically Relevant Drug Interactions for Malaria

  • Joel TarningEmail author
  • Richard M. Hoglund
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_133-1

Introduction

Interactions between different substances and molecules in the human body have occurred for as long as humans have existed. Usually this is not something that we notice. However, with the increased use of pharmaceutical drugs, drug-drug interactions have become increasingly more important since it has the potential to make drugs ineffective or toxic. Less effective drugs can lead to a delayed, decreased, or absent pharmaceutical effect and therefore not yield the promised treatment for the disease and/or symptom. Reduced effect can also result in increased risk of resistance development in anti-infective treatments. Drug toxicity can result in adverse events (i.e., side effects) and in some cases even death.

Malaria is a life-threatening disease that may result in death if left untreated, and a degree of drug-drug interactions might therefore be a necessary risk. Thus, it is important to consider drug-drug interactions, given the many drugs that are potentially...

This is a preview of subscription content, log in to check access.

References

  1. Achan J, Kakuru A, Ikilezi G, Ruel T, Clark TD, Nsanzabana C, et al. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med. 2012;367(22):2110–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Almond LM, Edirisinghe D, Dalton M, Bonington A, Back DJ, Khoo SH. Intracellular and plasma pharmacokinetics of nevirapine in human immunodeficiency virus-infected individuals. Clin Pharmacol Ther. 2005;78(2):132–42.PubMedCrossRefGoogle Scholar
  3. Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014;371(5):411–23.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bancone G, Chowwiwat N, Somsakchaicharoen R, Poodpanya L, Moo PK, Gornsawun G, et al. Single low dose primaquine (0.25mg/kg) does not cause clinically significant haemolysis in G6PD deficient subjects. Gutman J, editor. PLoS One. 2016;11(3):e0151898.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Brandon EFA, Raap CD, Meijerman I, Beijnen JH, Schellens JHM. An update on in vitro test methods in human hepatic drug biotransformation research: pros and cons. Toxicol Appl Pharmacol. 2003;189(3):233–46.PubMedCrossRefGoogle Scholar
  6. Burhenne J, Matthée A-K, Pasáková I, Röder C, Heinrich T, Haefeli WE, et al. No evidence for induction of ABC transporters in peripheral blood mononuclear cells in humans after 14 days of efavirenz treatment. Antimicrob Agents Chemother. 2010;54(10):4185–91.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Byakika-Kibwika P, Lamorde M, Mayito J, Nabukeera L, Namakula R, Mayanja-Kizza H, et al. Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults. J Antimicrob Chemother. 2012;67(9):2213–21.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Centers for Disease Control and Prevention. Treatment for TB Disease | Treatment | TB | [Internet]. 2018 [cited 2018 Sep 6]. Available from: https://www.cdc.gov/tb/topic/treatment/tbdisease.htm
  9. Chairat K, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Hanpithakpong W, Blessborn D, et al. Enantiospecific pharmacokinetics and drug–drug interactions of primaquine and blood-stage antimalarial drugs. J Antimicrob Chemother. 2018;73:3102–13.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chandler B, Almond L, Ford J, Owen A, Hoggard P, Khoo S, et al. The effects of protease inhibitors and nonnucleoside reverse transcriptase inhibitors on p-glycoprotein expression in peripheral blood mononuclear cells in vitro. J Acquir Immune Defic Syndr. 2003;33(5):551–6.PubMedCrossRefGoogle Scholar
  11. Chotsiri P, Wattanakul T, Hoglund RM, Hanboonkunupakarn B, Pukrittayakamee S, Blessborn D, et al. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers. Br J Clin Pharmacol. 2017;83(12):2752–66.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Croft SL, Duparc S, Arbe-Barnes SJ, Craft JC, Shin C-S, Fleckenstein L, et al. Review of pyronaridine antimalarial properties and product characteristics. Malar J. 2012;11(1):270.PubMedPubMedCentralCrossRefGoogle Scholar
  13. European Medicines Agency. Assessment report Eurartesim. 2011.Google Scholar
  14. Fellay J, Marzolini C, Decosterd L, Golay KP, Baumann P, Buclin T, et al. Variations of CYP3A activity induced by antiretroviral treatment in HIV-1 infected patients. Eur J Clin Pharmacol. 2005;60(12):865–73.PubMedCrossRefGoogle Scholar
  15. Finch CK, Chrisman CR, Baciewicz AM, Self TH. Rifampin and rifabutin drug interactions: an update. Arch Intern Med. 2002;162(9):985–92.PubMedCrossRefGoogle Scholar
  16. Fontaine F, de Sousa G, Burcham PC, Duchêne P, Rahmani R. Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci. 2000;66(22):2193–212.PubMedCrossRefGoogle Scholar
  17. German P, Greenhouse B, Coates C, Dorsey G, Rosenthal PJ, Charlebois E, et al. Hepatotoxicity due to a drug interaction between amodiaquine plus artesunate and efavirenz. Clin Infect Dis. 2007;44(6):889–91.PubMedCrossRefGoogle Scholar
  18. Greiner B, Eichelbaum M, Fritz P, Kreichgauer H-P, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999;104(2):147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Hanboonkunupakarn B, Ashley EA, Jittamala P, Tarning J, Pukrittayakamee S, Hanpithakpong W, et al. Open-label crossover study of primaquine and dihydroartemisinin-piperaquine pharmacokinetics in healthy adult thai subjects. Antimicrob Agents Chemother. 2014;58(12):7340–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hoglund RM, Byakika-Kibwika P, Lamorde M, Merry C, Ashton M, Hanpithakpong W, et al. Artemether-lumefantrine coadministration with antiretrovirals; population pharmacokinetics and dosing implications. Br J Clin Pharmacol. 2014;79:636–49.PubMedCentralCrossRefGoogle Scholar
  21. Huang L, Parikh S, Rosenthal PJ, Lizak P, Marzan F, Dorsey G, et al. Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers. J Acquir Immune Defic Syndr. 2012;61(3):310–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Huang L, Carey V, Lindsey JC, Marzan F, Gingrich D, Graham B, et al. Concomitant nevirapine impacts pharmacokinetic exposure to the antimalarial artemether-lumefantrine in African children. Pett SL, editor. PLoS One. 2017;12(10):e0186589.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Jittamala P, Pukrittayakamee S, Ashley EA, Nosten F, Hanboonkunupakarn B, Lee SJ, et al. Pharmacokinetic interactions between primaquine and pyronaridine-artesunate in healthy adult thai subjects. Antimicrob Agents Chemother. 2015;59(1):505–13.PubMedCrossRefGoogle Scholar
  24. Kajubi R, Huang L, Were M, Kiconco S, Li F, Marzan F, et al. Parasite clearance and artemether pharmacokinetics parameters over the course of artemether-lumefantrine treatment for malaria in human immunodeficiency virus (HIV)-infected and HIV-uninfected ugandan children. Open Forum Infect Dis. 2016;3(4):ofw217.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kajubi R, Huang L, Jagannathan P, Chamankhah N, Were M, Ruel T, et al. Antiretroviral therapy with efavirenz accentuates pregnancy-associated reduction of dihydroartemisinin-piperaquine exposure during malaria chemoprevention. Clin Pharmacol Ther. 2017;102(3):520–8.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Khoo S, Back D, Winstanley P. The potential for interactions between antimalarial and antiretroviral drugs. AIDS. 2005;19(10):995–1005.PubMedCrossRefGoogle Scholar
  27. Kim K-A, Park J-Y, Lee J-S, Lim S. Cytochrome P450 2C8 and CYP3A4/5 are involved in chloroquine metabolism in human liver microsomes. Arch Pharm Res. 2003;26(8):631–7.PubMedCrossRefGoogle Scholar
  28. Kobylinski KC, Ubalee R, Ponlawat A, Nitatsukprasert C, Phasomkulsolsil S, Wattanakul T, et al. Ivermectin susceptibility and sporontocidal effect in greater mekong subregion anopheles. Malar J. 2017;16(1):280.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kredo T, Mauff K, Van der Walt JS, Wiesner L, Maartens G, Cohen K, et al. Interaction between artemether-lumefantrine and nevirapine-based antiretroviral therapy in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55(12):5616–23.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kredo T, Mauff K, Workman L, Van der Walt JS, Wiesner L, Smith PJ, et al. The interaction between artemether-lumefantrine and lopinavir/ritonavir-based antiretroviral therapy in HIV-1 infected patients. BMC Infect Dis. 2016;16(1):30.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lamorde M, Byakika-Kibwika P, Mayito J, Nabukeera L, Ryan M, Hanpithakpong W, et al. Lower artemether, dihydroartemisinin and lumefantrine concentrations during rifampicin-based tuberculosis treatment. AIDS. 2013;27(6):961–5.PubMedCrossRefGoogle Scholar
  32. Lamson M, MacGregor T, Riska P, Erickson D, Maxfield P, Rowland L, et al. Nevirapine induces both CYP3A4 and CYP2B6 metabolic pathways. Clin Pharmacol Ther. Mosby, Inc. 1999;65(2):137.CrossRefGoogle Scholar
  33. Li X-Q, Björkman A, Andersson TB, Ridderström M, Masimirembwa CM. Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther. 2002;300(2):399–407.PubMedCrossRefGoogle Scholar
  34. Maganda BA, Minzi OM, Kamuhabwa AA, Ngasala B, Sasi PG. Outcome of artemether-lumefantrine treatment for uncomplicated malaria in HIV-infected adult patients on anti-retroviral therapy. Malar J. 2014;13(1):205.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Official American thoracic society/centers for disease control and prevention/infectious diseases society of America clinical practice guidelines: treatment of drug-susceptible tuberculosis. 2016. Clinical Infectious Diseases, https://academic.oup.com/cid/article/63/7/e147/2196792?searchresult=1.
  36. Natureeba P, Ades V, Luwedde F, Mwesigwa J, Plenty A, Okong P, et al. Lopinavir/ritonavir-based Antiretroviral Treatment (ART) versus efavirenz-based ART for the prevention of malaria among HIV- infected pregnant women. J Infect Dis. 2014;210(12):1938–45.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Oswald S, Meyer zu Schwabedissen HE, Nassif A, Modess C, Desta Z, Ogburn ET, et al. Impact of efavirenz on intestinal metabolism and transport: insights from an interaction study with ezetimibe in healthy volunteers. Clin Pharmacol Ther. 2012;91(3):506–13.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Parikh S, Fehintola F, Huang L, Olson A, Adedeji WA, Darin KM, et al. Artemether-lumefantrine exposure in HIV-infected nigerian subjects on nevirapine-containing antiretroviral therapy. Antimicrob Agents Chemother. 2015;59(12):7852–6.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Parikh S, Kajubi R, Huang L, Ssebuliba J, Kiconco S, Gao Q, et al. Antiretroviral choice for HIV impacts antimalarial exposure and treatment outcomes in Ugandan children. Clin Infect Dis. 2016;63(3):414–22.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Pinilla YT, Lopes CPS, Sampaio SV, Andrade FS, Melo GC, Orfanó AS, et al. Promising approach to reducing Malaria transmission by ivermectin: sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi. Milon G, editor. PLoS Negl Trop Dis. 2018;12(2):e0006221.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Pukrittayakamee S, Viravan C, Charoenlarp P, Yeamput C, Wilson RJ, White NJ. Antimalarial effects of rifampin in Plasmodium vivax malaria. Antimicrob Agents Chemother. 1994;38(3):511–4.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Pukrittayakamee S, Tarning J, Jittamala P, Charunwatthana P, Lawpoolsri S, Lee SJ, et al. Pharmacokinetic Interactions between Primaquine and Chloroquine. Antimicrob Agents Chemother. 2014;58(6):3354–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Reinach B, de Sousa G, Dostert P, Ings R, Gugenheim J, Rahmani R. Comparative effects of rifabutin and rifampicin on cytochromes P450 and UDP-glucuronosyl-transferases expression in fresh and cryopreserved human hepatocytes. Chem Biol Interact. 1999;121(1):37–48.PubMedCrossRefGoogle Scholar
  44. Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR. Efavirenz induces CYP2B6- mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49(5):513–9.PubMedCrossRefGoogle Scholar
  45. Schuetz EG, Beck WT, Schuetz JD. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol Pharmacol. 1996;49(2):311–8.PubMedGoogle Scholar
  46. Smit MR, Ochomo EO, Aljayyoussi G, Kwambai TK, Abong’o BO, Chen T, et al. Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis Elsevier. 2018;18(6):615–26.CrossRefGoogle Scholar
  47. Soyinka JO, Onyeji CO. Alteration of pharmacokinetics of proguanil in healthy volunteers following concurrent administration of efavirenz. Eur J Pharm Sci. 2010;39(4):213–8.PubMedCrossRefGoogle Scholar
  48. Soyinka JO, Onyeji CO, Omoruyi SI, Owolabi AR, Sarma PV, Cook JM. Effects of concurrent administration of nevirapine on the disposition of quinine in healthy volunteers. J Pharm Pharmacol. 2009;61(4):439–43.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Störmer E, von Moltke LL, Perloff MD, Greenblatt DJ. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture. Pharm Res. 2002;19(7):1038–45.PubMedCrossRefGoogle Scholar
  50. Strath M, Scott-Finnigan T, Gardner M, Williamson D, Wilson I. Antimalarial activity of rifampicin in vitro and in rodent models. Trans R Soc Trop Med Hyg. 1993;87(2):211–6.PubMedCrossRefGoogle Scholar
  51. Tchaparian E, Sambol NC, Arinaitwe E, McCormack SA, Bigira V, Wanzira H, et al. Population pharmacokinetics and pharmacodynamics of lumefantrine in young Ugandan children treated with artemether-lumefantrine for uncomplicated Malaria. J Infect Dis. 2016;214(8):1243–51. UNAIDS. UNAIDS data 2018. 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  52. UNAIDS | UNAIDS data 2018 | [Internet]. 2018 [cited 2018 Aug 22]. Available from: http://www.unaids.org/en/resources/documents/2018/unaids-data-2018.
  53. Uthman OA, Graves PM, Saunders R, Gelband H, Richardson M, Garner P. Safety of primaquine given to people with G6PD deficiency: systematic review of prospective studies. Malar J. 2017;16(1):346.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Van Geertruyden J-P. Interactions between malaria and human immunodeficiency virus anno 2014. Clin Microbiol Infect. 2014;20(4):278–85.PubMedCrossRefGoogle Scholar
  55. WHO. Guidelines for the treatment of malaria. Geneva: World Health Organization; 2015.Google Scholar
  56. World Health Organization. Treatment of Tuberculosis. 2010.Google Scholar
  57. World Health Organization. TUBERCULOSIS REPORT 2017 GLOBAL. 2017.Google Scholar
  58. World Health Organization. World malaria report 2017. World Health Organization; 2018.Google Scholar
  59. Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr. 2006;42(1):52–60.PubMedGoogle Scholar
  60. Zhang D, Chando TJ, Everett DW, Patten CJ, Dehal SS, Humphreys WG. In vitro inhibition of UDP glucuronosyltransferases by atazanavir and other HIV protease inhibitors and the relationship of this property to in vivo bilirubin glucuronidation. Drug Metab Dispos. 2005;33(11):1729–39.PubMedCrossRefGoogle Scholar
  61. Zhao XJ, Yokoyama H, Chiba K, Wanwimolruk S, Ishizaki T. Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther. 1996;279(3):1327–34.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
  2. 2.Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK