Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

FOL Modeling of Integrity Constraints (Dependencies)

  • Alin Deutsch
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_980

Synonyms

Dependencies; Relational integrity constraints

Definition

Integrity constraints (also known as dependencies in the relational model) are domain-specific declarations which indicate the intended meaning of the data stored in a database. They complement the description of the structure of the data (e.g., in the relational model the structure is given by listing the names of tables and the names and types of their attributes). Integrity constraints express properties that must be satisfied by all instances of a database schema that can arise in the intended application domain (e.g., “no two distinct employees may have the same ssn value”, “departments have a single manager”, etc.).

Historical Background

The reference textbook [1] provides a comprehensive, unifying overview of the many special classes of relational dependencies, their modeling in first-order logic (FOL), and the key problems in the study of dependencies. This entry is a condensed form of chapter 10 in [1]...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abiteboul S, Hull R, Vianu V. Foundations of databases. Reading: Addison-Wesley; 1995.zbMATHGoogle Scholar
  2. 2.
    Beeri C, Vardi MY. The implication problem for data dependencies. In: Proceedings of the International Conference on Algorithms, Languages and Programming; 1981. p. 73–85.CrossRefGoogle Scholar
  3. 3.
    Codd EF. Relational completeness of database sublanguages. In: Rustin R, editor. Courant computer science symposium 6: data base systems. Englewood Cliffs: Prentice-Hall; 1972. p. 65–98.Google Scholar
  4. 4.
    Date CJ. Referential integrity. In: Proceedings of the 7th International Conference on Very Data Bases; 1981. p. 2–12.Google Scholar
  5. 5.
    Delobel C. Normalization and hierarchical dependencies in the relational data model. ACM Trans Database Syst. 1978;3(3):201–22.CrossRefGoogle Scholar
  6. 6.
    Deutsch A, Tannen V. XML queries and constraints, containment and reformulation. Theor Comput Sci. 2005;336(1):57–87.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Deutsch A, Ludäscher B, Nash A. Rewriting queries using views with access patterns under integrity constraints. Theor Comput Sci. 2007;371(3):200–26.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fagin R. Horn clauses and database dependencies. J ACM. 1982;29(4):952–85.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fagin R. Multivalued dependencies and a new normal form for relational databases. ACM Trans Database Syst. 1977;2(3):262–78.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fagin R, Vardi MY. The theory of data dependencies: a survey. In: Anshel M, Gewirtz W, editors. Mathematics of information processing: proceedings of symposia in applied mathematics, vol. 34. Providence: American Mathematical Society; 1986. p. 19–27.CrossRefGoogle Scholar
  11. 11.
    Gallaire H, Minker J. Logic and databases. New York: Plenum Press; 1978.zbMATHGoogle Scholar
  12. 12.
    Ginsburg S, Zaiddan SM. Properties of functional dependency families. J ACM. 1982;29(4):678–98.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Grahne G, Mendelzon AO. Tableau techniques for querying information sources through global schemas. In: Proceedings of the 7th International Conference on Database Theory; 1999. p. 332–47.Google Scholar
  14. 14.
    Kannellakis PC. Elements of relational database theory. In: Van Leeuwen J, editor. Handbook of theoretical computer science. Amsterdam: Elsevier; 1991.p. 1074–156.Google Scholar
  15. 15.
    Maier D, Ullman JD, Vardi MY. On the foundations of the universal relation model. ACM Trans Database Syst. 1984;9(2):283–308.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Mendelzon AO, Maier D. Generalized mutual dependencies and the decomposition of database relations. In: Proceedings of the 5th International Conference on Very Data Bases; 1979. p. 75–82.Google Scholar
  17. 17.
    Nicolas JM. First order logic formalization for functional, multivalued, and mutual dependencies. Acta Informatica. 1982;18(3):227–53.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Paredaens J. Transitive dependencies in a database scheme. Technical Report R387, MBLE, Brussels; 1979.Google Scholar
  19. 19.
    Parker DS, Parsaye-Ghomi K. Inference involving embedded multivalued dependencies and transitive dependencies. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1980. p. 52–7.Google Scholar
  20. 20.
    Sagiv Y, Walecka SF. Subset dependencies and a completeness result for a subclass of embedded multivalued dependencies. J ACM. 1982;29(1):103–17.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Vardi MY. On decomposition of relational databases. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science; 1982. p. 176–85.Google Scholar
  22. 22.
    Vardi MY. Trends in theoretical computer science. In: Borger E, editor. Fundamentals of dependency theory. Rockville: Computer Science Press; 1987.p. 171–224.Google Scholar
  23. 23.
    Yannakakis M, Papadimitriou C. Algebraic dependencies. J Comput Syst Sci. 1982;25(2):3–41.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Zaniolo C. Analysis and design of relational schemata for database systems. PhD Thesis, University of California, Los Angeles; 1976. Technical Report UCLA-Eng-7669, Department of Computer Science.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of California-San DiegoLa JollaUSA

Section editors and affiliations

  • Val Tannen
    • 1
  1. 1.Dept. of Computer and Inf. ScienceUniv. of PennsylvaniaPhiladelphiaUSA