Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Three-Dimensional GIS and Geological Applications

  • Martin Breunig
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_426

Synonyms

Geoscientific information system; Spatial information system

Definition

An information system for the in−/output, modeling, management, processing, analyzing and visualization of geoscientific data including geo-referenced three-dimensional geometric, topological and attribute data. The three-dimensional geometric data may consist of points/vertices (x,y,z-coordinates), curves, surfaces and polyhedra, respectively. The topological data may consist of nodes, edges, faces and solids, respectively. Typical attribute data are descriptions of geological strata, i.e., properties of strata such as “geological age,” “soil type,” “main components of the stratum” etc.

The implementation of a three-dimensional GIS provides data types, spatial access structures including geometric/topological algorithms and a spatial or visual query language for the modeling, management and analysis of geo-referenced three-dimensional data.

Historical Background

Three-dimensional GIS have two roots in the...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abdul-Rahman A, Zlatanova S, Coors V. Innovations in 3D geoinformation systems, lecture notes in geoinformation and cartography. Heidelberg: Springer; 2006.CrossRefGoogle Scholar
  2. 2.
    Balovnev O, Bode T, Breunig M, Cremers AB, Müller W, Pogodaev G, Shumilov S, Siebeck J, Siehl A, Thomsen A. The story of the GeoToolKit - an object-oriented geodatabase kernel system. Geoinformatica. 2004;8(1):5–47.CrossRefGoogle Scholar
  3. 3.
    Beckmann N., Kriegel H-P, Schneider R, Seeger B. The R*-tree: an efficient and robust access method for points and rectangles. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1990. p. 322–31.Google Scholar
  4. 4.
    Brisson E. Representing geometric structures in d dimensions: topology and order. In: Proceedings of the 5th Annual Symposium on Computational Geometry; 1989. p. 218–27.Google Scholar
  5. 5.
    V. and Coors A (eds.). Zipf 3D–Geoinformations systeme, Grundlagen und Anwendungen. Wichmann – Hüthig: Heidelberg; 2004.Google Scholar
  6. 6.
  7. 7.
    Götze HJ, Lahmeyer B. Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics. 1988;53(8):1096–108.CrossRefGoogle Scholar
  8. 8.
    Güting RH. An introduction to spatial database systems. VLDB J. 1994;3(4):357–99.CrossRefGoogle Scholar
  9. 9.
    Guttman A. R-Trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1984. p. 47–57.Google Scholar
  10. 10.
    Lienhardt P. Subdivision of n-dimensional spaces and n-dimensional generalized maps. In: Proceedings of the 5th Annual Symposium on Computational Geometry; 1989. p. 228–36.Google Scholar
  11. 11.
    Lienhardt P. N-dimensional generalized combinatorial maps and cellular quasi-manifolds. J Comp Geom Appl. 1994;4(3):275–324.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lévy B , Mallet J-L. Discrete smooth interpolation: constrained discrete fairing for arbitrary meshes, ISA-GOCAD (Inria Lorraine/CNRS), ENSG. Vandoeuvre Nancy. http://www.earthdecision.com/news/white_papers/DSI.pdf.
  13. 13.
    Mallet JL. Geomodelling. New York: Oxford University Press; 2002.Google Scholar
  14. 14.
  15. 15.
    Pigot S. A topological model for a 3D spatial information system. In: Proceedings of the 5th International Symposium on Spatial Data Handling; 1992. p. 344–60.Google Scholar
  16. 16.
    Raper J, editor. Three dimensional applications in geographical information systems. London: Taylor & Francis; 1989.Google Scholar
  17. 17.
    Samet H. The design and analysis of spatial data structures. Reading: Addison-Wesley; 1990.Google Scholar
  18. 18.
    Schaeben H, Apel M, vd. Boogart G, Kroner U. GIS 2D, 3D, 4D, nD. Informatik-Spektrum. 2003;26(3): 173–179.Google Scholar
  19. 19.
    Siehl A. Construction of geological maps based on digital spatial models. Geol Jb A. 1988;104:253–61.Google Scholar
  20. 20.
    Turner AK, editor. Three-dimensional modeling with geoscientific information systems. Dordrecht: Kluwer Academic; 1991.Google Scholar
  21. 21.
    P, van Oosterom S, Zlatanova F, Penninga E, editors. Fendel Advances in 3D geoinformation systems, lecture notes in geoinformation and cartography. Heidelberg: Springer; 2007.Google Scholar
  22. 22.
    Vinken R. Digital geoscientific maps - a research project of the DFG. In: Proceedings of the International Colloquium at Dinkelsbühl, Geolog. Jahrbuch A104; 1988. p. 7–20.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of OsnabrueckOsnabrueckGermany

Section editors and affiliations

  • Ralf Hartmut Güting
    • 1
  1. 1.Computer ScienceUniversity of HagenHagenGermany