Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Temporal Aggregation

  • Johann Gamper
  • Michael H. Böhlen
  • Christian S. Jensen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_386

Definition

In database management, aggregation denotes the process of consolidating or summarizing a database instance; this is typically done by creating so-called aggregation groups of elements in the argument database instance and then applying an aggregate function to each group, thus obtaining an aggregate value for each group that is then associated with each element in the group. In a relational database context, the instances are relations and the elements are tuples. Aggregation groups are then typically formed by partitioning the tuples based on the values of one or more attributes so that tuples with identical values for these attributes are assigned to the same group. An aggregate function, e.g., sum, avg, or min, is then applied to another attribute to obtain a single value for each group that is assigned to each tuple in the group as a value of a new attribute. Relational projection is used for eliminating detail from aggregation results.

In temporal relational...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ben-Zvi J. The time relational model. PhD thesis, Computer Science Department, UCLA; 1982.Google Scholar
  2. 2.
    Böhlen MH, Gamper J, Jensen CS. How would you like to aggregate your temporal data? In: Proceedings of the 13th International Symposium on Temporal Representation and Reasoning; 2006. p. 121–36.Google Scholar
  3. 3.
    Böhlen MH, Gamper J, Jensen CS. Multi-dimensional aggregation for temporal data. In: Advances in Database Technology, Proceedings of the 10th International Conference on Extending Database Technology; 2006. p. 257–75.Google Scholar
  4. 4.
    Gao D, Snodgrass RT. Temporal slicing in the evaluation of XML queries. In: Proceedings of the 29th International Conference on Very Large Data Bases; 2003. p. 632–43.CrossRefGoogle Scholar
  5. 5.
    Gao D, Gendrano JAG, Moon B, Snodgrass RT, Park M, Huang BC, Rodrigue JM. Main memory-based algorithms for efficient parallel aggregation for temporal databases. Distrib Parallel Databases. 2004;16(2):123–63.CrossRefGoogle Scholar
  6. 6.
    Kline N, Snodgrass RT. Computing temporal aggregates. In: Proceedings of the 11th International Conference on Data Engineering; 1995. p. 222–31.Google Scholar
  7. 7.
    Moon B, Vega Lopez IF, Immanuel V. Efficient algorithms for large-scale temporal aggregation. IEEE Trans Knowl Data Eng. 2003;15(3):744–59.CrossRefGoogle Scholar
  8. 8.
    Navathe SB, Ahmed R. A temporal relational model and a query language. Inf Sci. 1989;49(1–3):147–75.zbMATHCrossRefGoogle Scholar
  9. 9.
    Snodgrass RT, Gomez S, McKenzie LE. Aggregates in the temporal query language TQuel. IEEE Trans Knowl Data Eng. 1993;5(5):826–42.CrossRefGoogle Scholar
  10. 10.
    Tansel AU. A statistical interface to historical relational databases. In: Proceedings of the 3th International Conference on Data Engineering; 1987. p. 538–46.Google Scholar
  11. 11.
    Tao Y, Papadias D, Faloutsos C. Approximate temporal aggregation. In: Proceedings of the 20th International Conference on Data Engineering; 2004. p. 190–201.Google Scholar
  12. 12.
    Tuma PA. Implementing historical aggregates in TempIS. MSc thesis, Wayne State University; 1992.Google Scholar
  13. 13.
    Vega Lopez IF, Snodgrass RT, Moon B. Spatiotemporal aggregate computation: a survey. IEEE Trans Knowl Data Eng. 2005;17(2):271–86.CrossRefGoogle Scholar
  14. 14.
    Yang J, Widom J. Incremental computation and maintenance of temporal aggregates. VLDB J. 2003;12(3):262–83.CrossRefGoogle Scholar
  15. 15.
    Zhang D, Markowetz A, Tsotras V, Gunopulos D, Seeger B. Efficient computation of temporal aggregates with range predicates. In: Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2001. p. 237–45.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Johann Gamper
    • 1
  • Michael H. Böhlen
    • 2
    • 3
  • Christian S. Jensen
    • 4
  1. 1.Free University of Bozen-BolzanoBolzanoItaly
  2. 2.Free University of Bozen-BolzanoBozen-BolzanoItaly
  3. 3.University of ZurichZürichSwitzerland
  4. 4.Department of Computer ScienceAalborg UniversityAalborgDenmark

Section editors and affiliations

  • Richard T. Snodgrass
    • 1
  • Christian S. Jensen
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Aalborg UniversityAalborg ØstDenmark