Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Spatial Join

  • Nikos Mamoulis
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_356

Definition

The spatial join is one of the core operators in spatial database systems. Efficient spatial join evaluation is important, due to its high cost compared to other queries, like spatial selections and nearest-neighbor searches. A binary (i.e., pairwise) spatial join combines two datasets with respect to a spatial predicate (usually overlap/intersect). A typical example is “find all pairs of cities and rivers that intersect.” For instance, in Fig.  1 the result of the join between the set of cities { c 1, c 2, c 3, c 4, c 5} and rivers { r 1, r 2}, is {( r 1, c 1), ( r 2, c 2), ( r 2, c 5)}.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter JS. Scalable sweeping-based spatial join. In: Proceedings of the 24th International Conference on Very Large Data Bases; 1998. p. 570–81.Google Scholar
  2. 2.
    Brinkhoff T, Kriegel H-P, Seeger B. Efficient processing of spatial joins using r-trees. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1993. p. 237–46.CrossRefGoogle Scholar
  3. 3.
    Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M. Closest pair queries in spatial databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2000. p. 189–200.CrossRefGoogle Scholar
  4. 4.
    Güting RH. An introduction to spatial database systems. VLDB J. 1994;3(4):357–99.CrossRefGoogle Scholar
  5. 5.
    Guttman A. R-trees: a dynamic index structure for spatial searching. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1984. p. 47–57.Google Scholar
  6. 6.
    Koudas N, Sevcik KC. Size separation spatial join. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1997. p. 324–35.Google Scholar
  7. 7.
    Koudas N, Sevcik KC. High dimensional similarity joins: algorithms and performance evaluation. IEEE Trans Knowl Data Eng. 2000;12(1):3–18.CrossRefGoogle Scholar
  8. 8.
    Leutenegger ST, Edgington JM, Lopez MA. Str: a simple and efficient algorithm for R-tree packing. In: Proceedings of the 13th International Conference on Data Engineering; 1997. p. 497–506.Google Scholar
  9. 9.
    Lo M-L, Ravishankar CV. Spatial hash-joins. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 247–58.Google Scholar
  10. 10.
    Lo M-L, Ravishankar CV. The design and implementation of seeded trees: an efficient method for spatial joins. IEEE Trans Knowl Data Eng. 1998;10(1):136–52.CrossRefGoogle Scholar
  11. 11.
    Mamoulis N, Papadias D. Slot index spatial join. IEEE Trans Knowl Data Eng. 2003;15(1):211–31.CrossRefGoogle Scholar
  12. 12.
    Orenstein JA. Spatial query processing in an object-oriented database system. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1986. p. 326–36.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Papadopoulos A, Rigaux P, Scholl M. A performance evaluation of spatial join processing strategies. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases; 1999. p. 286–307.CrossRefGoogle Scholar
  14. 14.
    Patel JM, DeWitt DJ. Partition based spatial-merge join. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 259–70.Google Scholar
  15. 15.
    Preparata FP, Shamos MI. Computational geometry – an introduction. Springer; 1985.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Hong KongHong KongChina

Section editors and affiliations

  • Dimitris Papadias
    • 1
  1. 1.Dept. of Computer Science and Eng.Hong Kong Univ. of Science and TechnologyKowloonHong Kong SAR