Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Replication for Scalability

  • Ricardo Jiménez-Peris
  • Marta Patiño-Martínez
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_314

Synonyms

Cluster replication; Scale out; Scalable database replication

Definition

One of the main uses of data replication is to increase the scalability of databases. The idea is to have a cluster (of possibly inexpensive) nodes, to replicate the data across the nodes, and then distribute the load among them. In order to be scalable, the more nodes are added to the system, the higher the achievable throughput should be. The scale reached today is on tens of nodes (i.e., below 100 nodes). Communication is not an issue since CPU and IO overheads are dominant. The approach in the last years has been to learn from the traditional approaches but change some fundamentals so that the limitations of these traditional approaches are avoided.

In order to attain scalability each transaction should not be fully processed by every replica. This depends on how transactions are mapped to replicas. For read only transactions, it is easy to avoid redundant processing since they can be executed at any...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Amza C, Cox AL, Zwaenepoel W. Distributed versioning: consistent replication for scaling back-end databases of dynamic content web sites. In: Proceedings of the ACM/IFIP/USENIX International Middleware Conference; 2003.Google Scholar
  2. 2.
    Bernstein PA, Fekete A, Guo H, Ramakrishnan R, Tamma P. Relaxed-currency serializability for middle-tier caching and replication. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2006. p. 599–610.Google Scholar
  3. 3.
    Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and recovery in database systems. Reading: Addison Wesley; 1987.Google Scholar
  4. 4.
    Breitbart Y, Komondoor R, Rastogi R, Seshadri S, Silberschatz A. Update propagation protocols for replicated databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999.Google Scholar
  5. 5.
    Cecchet E, Marguerite J, Zwaenepoel W. C-JDBC: flexible database clustering middleware. In: Proceedings of the USENIX 2004 Annual Technical Conference; 2004.Google Scholar
  6. 6.
    Daudjee K, Salem K. Lazy database replication with snapshot isolation. In: Proceedings of the 32nd International Conference on Very Large Data Bases; 2006. p. 715–26.Google Scholar
  7. 7.
    Elnikety S, Zwaenepoel W, Pedone F. Database replication using generalized snapshot isolation. In: Proceedings of the 24th Symposium on Reliable Distributed Systems; 2005. p. 73–84.Google Scholar
  8. 8.
    Gançarski S, Naacke H, Pacitti E, Valduriez P. The leganet system: freshness-aware transaction routing in a database cluster. Inf Syst. 2007;32(2): 320–43.CrossRefGoogle Scholar
  9. 9.
    Gray J, Helland P, O’Neil P, Shasha D. The dangers of replication and a solution. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996.Google Scholar
  10. 10.
    Jiménez-Peris R, Patiño-Martínez M, Alonso G, Kemme B. Scalable database replication middleware. In: Proceedings of the 22nd IEEE International Conference on Distributed Computing Systems; 2002.Google Scholar
  11. 11.
    Jiménez-Peris R, Patiño-Martínez M, Alonso G, Kemme B. Are quorums an alternative for data replication. ACM Trans Database Syst. 2003;28(3):257–94.CrossRefGoogle Scholar
  12. 12.
    Kemme B, Alonso G. Don’t be lazy, be consistent: Postgres-R, a new way to implement database replication. In: Proceedings of the 26th International Conference on Very Large Data Bases; 2000.Google Scholar
  13. 13.
    Lin Y, Kemme B, Patiño-Martínez M, Jiménez-Peris R. Middleware based data replication providing snapshot isolation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2005.Google Scholar
  14. 14.
    Lin Y, Kemme B, Patiño-Martínez M, Jiménez-Peris R. Enhancing edge computing with database replication. In: Proceedings of the 26th Symposium on Reliable Distributed Systems; 2007.Google Scholar
  15. 15.
    Muñoz-Escoí FD, Pla-Civera J, Ruiz-Fuertes MI, Irún-Briz L, Decker H, Armendáriz-Iñigo JE, de Mendívil JRG. Managing transaction conflicts in middleware-based database replication architectures. In: Proceedings of the 25th Symposium on Reliable Distributed Systems; 2006. p. 401–20.Google Scholar
  16. 16.
    Patiño-Martínez M, Jiménez-Peris R, Kemme B, Alonso G. Middle-R: consistent database replication at the middleware level. ACM Trans Comput Syst. 2005;23(4):375–423.CrossRefGoogle Scholar
  17. 17.
    Pedone F, Guerraoui R, Schiper A. The database state machine approach. Distributed Parallel Databases. 2003;14(1):71–98.CrossRefGoogle Scholar
  18. 18.
    Perez-Sorrosal F, Patiño-Martínez M, Jiménez-Peris R, Kemme B. Consistent and scalable cache replication for multi-tier J2EE applications. In: Proceedings of the ACM/IFIP/USENIX 8th International Middleware Conference; 2007. p. 328–47.Google Scholar
  19. 19.
    Pinto AL, Oliveira R, Moura F, Pedone F. Partial replication in the database state machine. In: Proceedings of the IEEE International Symposium on Networking Computing and Applications; 2001. p. 298–309.Google Scholar
  20. 20.
    Plattner C, Alonso G. Ganymed: scalable replication for transactional web applications. In: Proceedings of the ACM/IFIP/USENIX 5th International Middleware Conference; 2004.CrossRefGoogle Scholar
  21. 21.
    Serrano D, Patiño-Martínez M, Jiménez-Peris R, Kemme B. Boosting database replication scalability through partial replication and 1-copy-snapshot-isolation. In: Proceedings of the IEEE Pacific Rim Dependable Computing Conference; 2007. p. 328–47.Google Scholar
  22. 22.
    Serrano D, Patiño-Martínez M, Jiménez-Peris R, Kemme B. An Autonomic Approach for Replication of Internet-based services. In: Proceedings of the 27th Symposium on Reliable Distributed Systems; 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ricardo Jiménez-Peris
    • 1
  • Marta Patiño-Martínez
    • 1
    • 2
  1. 1.Distributed Systems LabUniversidad Politecnica de MadridMadridSpain
  2. 2.ETSI InformáticosUniversidad Politécnica de Madrid (UPM)MadridSpain

Section editors and affiliations

  • Bettina Kemme
    • 1
  1. 1.School of Computer ScienceMcGill Univ.MontrealCanada