Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Replica Control

  • Ricardo Jiménez-Peris
  • Marta Patiño-Martínez
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_310

Synonyms

Cluster database replication; Database replication; Data replication protocols

Definition

In database replication, each data item has several physical copies, also called replicas, that are distributed over different nodes (sites). In case of full replication, each data item has a copy on each site. In this case, the term replica can also refer to a node hosting a copy of the entire database. Replica control is in charge of translating the read and write operations that clients submit on the logical data items into operations on the physical data copies. The goal is to keep a consistent state among all the replicas and to provide a consistent view of the data to the client. Replica control extends concurrency control in order to coordinate the execution of concurrent transactions at different replicas.

Historical Background

Replica control in databases has been studied since the 1980s. Early approaches mostly explored distributed locking and had their main focus on providing...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Amza C, Cox AL, Zwaenepoel W. Distributed versioning: consistent replication for scaling back-end databases of dynamic content web sites. In: Proceedings of the ACM/IFIP/USENIX International Middleware Conference; 2003. p. 282–304.Google Scholar
  2. 2.
    Bernstein PA, Fekete A, Guo H, Ramakrishnan R, Tamma P. Relaxed-currency serializability for middle-tier caching and replication. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2006. p. 599–610.Google Scholar
  3. 3.
    Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and recovery in database systems. Addison-Wesley: Reading; 1987.Google Scholar
  4. 4.
    Bornea MA, Hodson O, Elnikety S, Fekete A. One-copy serializability with snapshot isolation under the hood. In: Proceedings of the 27th International Conference on Data Engineering; 2011. p. 625–36.Google Scholar
  5. 5.
    Cecchet E, Candea G, Ailamaki A. Middleware-based database replication: the gaps between theory and practice. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2008. p. 739–52.Google Scholar
  6. 6.
    Chairunnanda P, Daudjee K, Tamer Özsu M. Confluxdb: multi-master replication for partitioned snapshot isolation databases. Proc. VLDB Endow. 2014;7(11):947–58.CrossRefGoogle Scholar
  7. 7.
    Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, et al. Spanner: Google’s globally distributed database. ACM Trans Comput Syst. 2013;31(3):8.CrossRefGoogle Scholar
  8. 8.
    Daudjee K, Salem K. Lazy database replication with snapshot isolation. In: Proceedings of the 32nd International Conference on Very Large Data Bases; 2006. p. 715–26.Google Scholar
  9. 9.
    DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, et al. Dynamo: Amazon’s highly available key-value store. In: Proceedings of the 21st ACM Symposium on Operating System Principles; 2007. p. 205–20.Google Scholar
  10. 10.
    Gray J, Helland P, O’Neil P, Shasha D. The dangers of replication and a solution. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 173–82.Google Scholar
  11. 11.
    Jung H, Han H, Fekete A, Röhm U. Serializable snapshot isolation for replicated databases in high-update scenarios. Proc. VLDB Endow. 2011;4(11): 783–94.Google Scholar
  12. 12.
    Kemme B, Alonso G. Don’t be lazy, be consistent: Postgres-r, a new way to implement database replication. In: Proceedings of the 26th International Conference on Very Large Data Bases; 2000. p. 134–43.Google Scholar
  13. 13.
    Lamport L. The part-time parliament. ACM Trans Comput Syst. 1998;16(2):133–69.CrossRefGoogle Scholar
  14. 14.
    Lin Y, Kemme B, Patiño-Martínez M, Jiménez-Peris R. Middleware based data replication providing snapshot isolation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2005. p. 419–30.Google Scholar
  15. 15.
    Patiño-Martínez M, Jiménez-Peris R, Kemme B, Alonso G. Middle-r: consistent database replication at the middleware level. ACM Trans Comput Syst. 2005;23(4):375–23.CrossRefGoogle Scholar
  16. 16.
    Pedone F, Guerraoui R, Schiper A. The database state machine approach. Distrib Parallel Databases. 2003;14(1).Google Scholar
  17. 17.
    Pedone F, Wiesmann M, Schiper A, Kemme B, Alonso G. Understanding replication in databases and distributed systems. In: Proceedings of the 20th IEEE International Conference on Distributed Computing Systems; 2000. p. 464–74.Google Scholar
  18. 18.
    Plattner Ch, Alonso G. Ganymed: scalable replication for transactional web applications. In: Proceedings of the ACM/IFIP/USENIX 5th International Middleware Conference; 2004. p. 155–74.CrossRefGoogle Scholar
  19. 19.
    Rao J, Shekita EJ, Tata S. Using paxos to build a scalable, consistent, and highly available datastore. PVLDB. 2011;4(4):243–54.Google Scholar
  20. 20.
    Röhm U, Böhm K, Schek H-J, Schuldt H. FAS – a freshness-sensitive coordination middleware for a cluster of OLAP components. In: Proceedings of the 28th International Conference on Very Large Data Bases; 2002. p. 754–65.CrossRefGoogle Scholar
  21. 21.
    Saito Y, Shapiro M. Optimistic replication. ACM Comput Surv. 2005;37(1):42–81.zbMATHCrossRefGoogle Scholar
  22. 22.
    Sovran Y, Power R, Aguilera MK, Li J. Transactional storage for geo-replicated systems. In: Proceedings of the 23rd ACM Symposium on Operating System Principles; 2011. p. 385–400.Google Scholar
  23. 23.
    Thomson A, Diamond T, Weng S-C, Ren K, Shao P, Abadi DJ. Calvin: fast distributed transactions for partitioned database systems. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2012. p. 1–12.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ricardo Jiménez-Peris
    • 1
  • Marta Patiño-Martínez
    • 1
    • 2
  1. 1.Distributed Systems LabUniversidad Politecnica de MadridMadridSpain
  2. 2.ETSI InformáticosUniversidad Politécnica de Madrid (UPM)MadridSpain