Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Mobile Sensor Network Data Management

  • Demetrios Zeinalipour-Yazti
  • Panos K. Chrysanthis
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_221

Synonyms

Mobile wireless sensor network data management; MSN data management

Definition

Mobile Sensor Network (MSN) Data Management refers to a collection of centralized and distributed algorithms, architectures and systems to handle (store, process and analyze) the immense amount of spatio-temporal data that is cooperatively generated by collections of sensing devices that move in space over time.

Formally, given a set of n homogenous or heterogeneous mobile sensors {s1, s2,…, sn} that are capable of acquiring m physical attributes {a1, a2,…, am } from their environment at every discrete time instance t (i.e., datahas a temporal dimension), an implicit or explicit mechanism that enables each si (in) to move in some multi-dimensional Euclidean space (i.e., data has one or more spatial dimensions), MSN Data Management provides the foundation to handle spatio-temporal data in the form (si, t, x, [y, z,]a1[,…,am]), where x, y, zdefines three possible spatial dimensions and the...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Allred J, Hasan AB, Panichsakul S, Pisano B, Gray P, Huang J-H, Han R, Lawrence D, and Mohseni K. SensorFlock: an airborne wireless sensor network of micro-air vehicles. In: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems; 2007. p. 117–29.Google Scholar
  2. 2.
    Andreou P, Zeinalipour-Yazti D, Chrysanthis PK, Samaras G. Workload-aware optimization of query routing trees in wireless sensor networks. In: Proceedings of the 9th International Conference on Mobile Data Management; 2008. p. 189–96.Google Scholar
  3. 3.
    Bergbreiter S, Pister KSJ. CotsBots: an off-the-shelf platform for distributed robotics. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems; 2003. p. 1632–7.Google Scholar
  4. 4.
    Chintalapudi K, Govindan R. Localized edge detection in sensor fields. Ad-hoc Networks. 2003;1(2–3):273–91.CrossRefGoogle Scholar
  5. 5.
    Dantu K, Rahimi MH, Shah H, Babel S, Dhariwal A, Sukhatme GS. Robomote: enabling mobility in sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks; 2005.Google Scholar
  6. 6.
    Eriksson J, Girod L, Hull B, Newton R, Madden S, Balakrishnan H. The Pothole Patrol: using a mobile sensor network for road surface monitoring. In: Proceedings of the 6th International Conference on Mobile Systems, Applications and Services; 2008. p. 29–39.Google Scholar
  7. 7.
    Hull B, Bychkovsky V, Chen K, Goraczko M, Miu A, Shih E, Zhang Y, Balakrishnan H, Madden S. CarTel: a distributed mobile sensor computing system. In: Proceedings of the 4th International Conference on Embedded Networked Sensor Systems; 2006.p. 125–38.Google Scholar
  8. 8.
    Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion: a scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking; 2000. p. 56–67.Google Scholar
  9. 9.
    Madden SR, Franklin MJ, Hellerstein JM, Hong W. The design of an acquisitional query processor for sensor networks. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2003.Google Scholar
  10. 10.
    Navarro-Serment LE, Grabowski R, Paredis CJJ, Khosla PK. Millibots: the development of a framework and algorithms for a distributed heterogeneous robot team. IEEE Robot Autom Mag. 2002;9(4).CrossRefGoogle Scholar
  11. 11.
    Nittel S, Trigoni N, Ferentinos K, Neville F, Nural A, Pettigrew N. A drift-tolerant model for data management in ocean sensor networks. In: Proceedings of the 6th ACM International Workshop on Data Engineering for Wireless and Mobile Access; 2007. p. 49–58.Google Scholar
  12. 12.
    Sadler C, Zhang P, Martonosi M, Lyon S. Hardware design experiences in ZebraNet. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems; 2004. p. 227–38.Google Scholar
  13. 13.
    Sharaf M, Beaver J, Labrinidis A, Chrysantrhis PK. Balancing energy efficiency and quality of aggregate data in sensor networks. VLDB J. 2004;13(4):384–403.CrossRefGoogle Scholar
  14. 14.
    Shenker S, Ratnasamy S, Karp B, Govindan R, Estrin D. Data-centric storage in sensornets. SIGCOMM Comput Commun Rev. 2003;33(1):137–42.CrossRefGoogle Scholar
  15. 15.
    Szewczyk R, Mainwaring A, Polastre J, Anderson J, Culler D. An analysis of a large scale habitat monitoring application. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems; 2004. p. 214–26.Google Scholar
  16. 16.
    Yao Y, Gehrke JE. The cougar approach to in-network query processing in sensor networks. ACM SIGMOD Rec. 2002;32(3):9–18.CrossRefGoogle Scholar
  17. 17.
    Zeinalipour-Yazti D, Andreou P, Chrysanthis P, Samaras G. MINT views: materialized in-network top-k views in sensor networks. In: Proceedings of the 2007 International Conference on Mobile Data Management; 2007. p. 182–9.Google Scholar
  18. 18.
    Zeinalipour-Yazti D, Andreou P, Chrysanthis P, Samaras G. SenseSwarm: a perimeter-based data acquisition framework for mobile sensor networks. In: Proceedings of the VLDB Workshop on Data Management for Sensor Networks; 2007. p. 13–8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Demetrios Zeinalipour-Yazti
    • 1
  • Panos K. Chrysanthis
    • 2
  1. 1.Department of Computer ScienceNicosiaCyprus
  2. 2.Department of Computer ScienceUniversity of PittsburghPittsburghUSA

Section editors and affiliations

  • Le Gruenwald
    • 1
  1. 1.School of Computer ScienceUniv. of OklahomaNormanUSA