Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Ontology Elicitation

  • Pieter De Leenheer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1316

Synonyms

Knowledge creation; Ontology acquisition; Ontology argumentation; Ontology learning; Ontology negotiation

Definition

Ontology elicitation embraces the family of methods and techniques to explicate, negotiate, and ultimately agree on a partial account of the structure and semantics of a particular domain, as well as on the symbols used to represent and apply this semantics unambiguously.

Ontology elicitation only results in a partial account because the formal definition of an ontology cannot completely specify the intended structure and semantics of each concept in the domain, but at best can approximate it. Therefore, the key for scalability is to reach the appropriate amount of consensus on relevant ontological definitions through an effective meaning negotiation in an efficient manner.

Historical Background

Ontology elicitation is based on techniques of knowledge acquisition, a subfield of AI that is concerned with eliciting and representing knowledge of human experts so...
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bachimont B, Troncy R, Isaac A. Semantic commitment for designing ontologies: a proposal. In: Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web; 2002. p. 114–21.zbMATHCrossRefGoogle Scholar
  2. 2.
    Blomqvist E. OntoCase – a pattern-based ontology construction approach. In: Proceedings of the OTM Confederated International Conferences, CoopIS, DOA, GADA, and ODBASE; 2007. p. 971–88.Google Scholar
  3. 3.
    Buitelaar P, Cimiano P, Magnini B. Ontology learning from text: methods, evaluation and applications, vol. 123 of Frontiers in Artificial Intelligence and Applications, IOS, Amsterdam. 2005.Google Scholar
  4. 4.
    Christiaens S, De Leenheer P, de Moor A, Robert Meersman R. Ontologising competencies in an interorganisational setting. In: Ontology management. Semantic web and beyond computing for human experience, vol. 7. Berlin: Springer; 2008. p. 265–88.Google Scholar
  5. 5.
    De Leenheer P, de Moor A, Meersman R. Context dependency management in ontology engineering: a formal approach. J Data Semant. 2006;8:26–56.zbMATHGoogle Scholar
  6. 6.
    De Leenheer P, Meersman R. Towards community-based evolution of knowledge-intensive systems. In: Proceedings of the OTM Confederated International Conferences, CoopIS, DOA, GADA, and ODBASE; 2007. p. 989–1006.Google Scholar
  7. 7.
    de Moor A, De Leenheer P, Meersman R. DOGMA-MESS: a meaning evolution support system for interorganizational ontology engineering. In: Proceedings of the 14th International Conference on Conceptual Structures; 2006. p. 189–203.Google Scholar
  8. 8.
    Furnas G, Landauer T, Dumais S. The vocabulary problem in human-system communication. Commun ACM. 1987;30(11):964–71.CrossRefGoogle Scholar
  9. 9.
    Gangemi A. Ontology design patterns for semantic web content. In: Proceedings of the 4th International Semantic Web Conference; 2005. p. 262–76.CrossRefGoogle Scholar
  10. 10.
    Ganter B, Stumme G, Wille R, editors. Formal concept analysis, foundations and applications, LNCS, vol. 3626. Berlin: Springer; 2005.Google Scholar
  11. 11.
    Hepp M. Possible ontologies: how reality constrains the development of relevant ontologies. IEEE Internet Comput. 2007;11(1):90–6.CrossRefGoogle Scholar
  12. 12.
    Hepp M, De Leenheer P, de Moor A, Sure Y, editors. Ontology management, semantic web, semantic web services, and business applications, vol. 7 of semantic web and beyond computing for human experience. Berlin: Springer; 2008.Google Scholar
  13. 13.
    Jarrar M, Demey J, Meersman R. On reusing conceptual data modeling for ontology engineering. J. Data Semant. 2003;1(1):185–207.CrossRefGoogle Scholar
  14. 14.
    Kotis K, Vouros G. Human-centered ontology engineering: the Hcome methodology. Knowl Inf Syst. 2005;10(1):109–31.CrossRefGoogle Scholar
  15. 15.
    Lessig L. Ontology management, semantic web, semantic web services, and business applications. Basic Books. 1999.Google Scholar
  16. 16.
    Milton N. Knowledge acquisition in practice: a step-by-step guide. London: Springer; 2007.Google Scholar
  17. 17.
    Pinto H, Staab S, Tempich C. DILIGENT: towards a fine-grained methodology for DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In: Proceedings of the 16th European Conference on AI; 2004.Google Scholar
  18. 18.
    Ryan H, Spyns P, De Leenheer P, Leary R. Ontology-based platform for trusted regulatory compliance services. In OTM workshops, LNCS. vol. 2889. Berlin: Springer: 2003. p. 675–89.CrossRefGoogle Scholar
  19. 19.
    Siorpaes K, Hepp M. Games with a purpose for the semantic web. IEEE Intell Syst. 2008;23(3):50–60.CrossRefGoogle Scholar
  20. 20.
    Spyns P, Meersman R, Jarrar M. Data modelling versus ontology engineering. ACM SIGMOD Rec. 2002;31(4):12–7.CrossRefGoogle Scholar
  21. 21.
    Stamper R. Information in business and administrative systems. New York: Wiley; 1973.Google Scholar
  22. 22.
    Van Damme C, Hepp M, Siorpaes K. Folksontology: an integrated approach for turning folksonomies into ontologies. In: Proceedings of the ESWC Workshop Bridging the Gap between Semantic Web and Web 2.0; 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vrije Universiteit Brussel, Collibra NVBrusselsBelgium

Section editors and affiliations

  • Avigdor Gal
    • 1
  1. 1.Fac. of IE & Mgmt.Technion--Israel Inst. of TechnologyHaifaIsrael