Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Integration of Rules and Ontologies

  • Jan Małuszyński
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1313

Definition

The layered structure of the Semantic Web (see http://www.w3.org/2007/03/layerCake.png) adopted by the World Wide Web Consortium W3C includes, among others, the Ontology layer with the web ontology language OWL and the rule layer with the emerging Rule Interchange Format (RIF) http://www.w3.org/TR/rif-fld/which allows rules to be translated between rule languages. The integration of rules and ontologies aims at developing techniques for interoperability between rules and ontologies in the Semantic Web. This is necessary for rule-based applications to access existing domain ontologies. In most of the proposals the integration is achieved by defining and implementing a new language which is a common extension of a given rule language and a given ontology language, enhancing the expressive power of each of the components. Alternatively, the integration of rules and ontologies may be achieved by designing from scratch one language sufficiently expressive to define both rules...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Antoniou G, Bikakis A. DR-Prolog: a system for defeasible reasoning with rules and ontologies on the semantic Web. IEEE Trans Knowl Data Eng. 2007;19(2):233–45.CrossRefGoogle Scholar
  2. 2.
    Baral C, Gelfond M. Logic programming and knowledge representation. J Log Program. 1994;19(20):73–148.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    de Bruijn J, Pearce D, Polleres A, Valverde A. Quantified equilibrium logic and hybrid rules. In: Proceedings of the 1st International Conference on Web Reasoning and Rule Systems; 2007. p. 58–72.Google Scholar
  4. 4.
    Drabent W, Małuszyński J, Well-founded semantics for hybrid rules. In: Proceedings of the 1st International Conference on Web Reasoning and Rule Systems; 2007. pp. 1–15.Google Scholar
  5. 5.
    Eiter T, Gottlob G, Mannila H. Disjunctive datalog. ACM Trans Database Syst. 1997;22(3):364–418.CrossRefGoogle Scholar
  6. 6.
    Eiter T, Lukasiewicz T, Schindlauer R, Tompits H. Combining answer set programming with description logics for the semantic web. In: Proceedings of the 9th International Conference on Principles of Knowledge Representation and Reasoning; 2004. p. 141–51.Google Scholar
  7. 7.
    Eiter T, Lukasiewicz T, Schindlauer R, Tompits H. Well-founded semantics for description logic programs in the semantic web. In: Proceedings of the 3rd International Workshop on Rules and Rule Markup Languages for the Semantic Web; 2004. p. 81–97.CrossRefGoogle Scholar
  8. 8.
    Erdmann M. Semantic web applications. 2007, first Asian Autumn School on Semantic Web, Tutorial video at: http://rease.semanticweb.org/ubp/.
  9. 9.
    Gelfond M, Lifschitz V. The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming; 1988. p. 1070–80.Google Scholar
  10. 10.
    Grosof BN. Prioritized conflict handling for logic programs. In: Proceedings of the 14th International Conference on Logic Programming; 1997. p. 197–211.Google Scholar
  11. 11.
    Grosof B. Semantic web rules with ontologies, and their e-Services applications. 2006, iSWC06 tutorial video at: http://videolectures.net/iswc06_grosof_swrot/.
  12. 12.
    Grosof B, Horrocks I, Volz R, Decker S. Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th International World Wide Web Conference; 2003. p. 48–57.Google Scholar
  13. 13.
    Kifer M. In: Eisinger N, Małuszyński J, editors. Rules and ontologies in F-logic, vol. 3564. Berlin: Reasoning Web, LCNS; 2005. p. 22–34.Google Scholar
  14. 14.
    Knorr M, Alferes JJ, Hitzler P. A well-founded semantics for hybrid MKNF knowledge bases. In: Proceedings of the 20th International Workshop on Description Logics; 2007. p. 347–54.Google Scholar
  15. 15.
    Levy A, Rousset MC. CARIN: a representation language combining horn rules and description logics. Artif Intell. 1998;104(1–2):165–209.zbMATHCrossRefGoogle Scholar
  16. 16.
    Motik B. and Rosati R. A faithful integration of description logics with logic programming. In: Proceedings of the 20th International Joint Conference on AI; 2007. p. 477–82.Google Scholar
  17. 17.
    Motik B, Sattler U, Studer R. Query answering for OWL-DL with rules. J Web Sem. 2005;3(1):41–60.CrossRefGoogle Scholar
  18. 18.
    Nilsson U, Małuszyński J. Logic, Programming and Prolog. 2nd ed. New York: Wiley. 1995, now available free of charge at: http://www.ida.liu.se/ ulfni/lpp/
  19. 19.
    Nute D. Defeasible logic. In: Handbook of logic in artificial intelligence and logic programming, vol. 3. Oxford: Oxford University Press; 1994. p. 353–95.Google Scholar
  20. 20.
    Rosati R. DL+log: tight integration of description logics and disjunctive datalog. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning; 2006. p. 68–78.Google Scholar
  21. 21.
    Sintek M, Decker S. TRIPLE – a query, inference, and transformation language for the semantic web. Lecture notes in computer science, vol 2342. Berlin: Springer; 2002. p. 364–378.zbMATHCrossRefGoogle Scholar
  22. 22.
    Gelder A, van Ross KA, Schlipf JS. Unfounded sets and well-founded semantics for general logic programs. In: Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 1988. p. 221–30.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Linköping UniversityLinköpingSweden

Section editors and affiliations

  • Avigdor Gal
    • 1
  1. 1.Fac. of IE & Mgmt.Technion--Israel Inst. of TechnologyHaifaIsrael