Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Suffix Tree

  • Maxime Crochemore
  • Thierry Lecroq
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1142

Synonyms

Compact suffix trie

Definition

The suffix tree \(\mathcal {S}(y)\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Blumer A, Blumer J, Ehrenfeucht A, Haussler D, Chen MT, Seiferas J. The smallest automaton recognizing the subwords of a text. Theor Comput Sci. 1985;40(1):31–55.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Crochemore M. Transducers and repetitions. Theor Comput Sci. 1986;45(1):63–86.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Crochemore M, Hancart C, Lecroq T. Algorithms on strings. Cambridge: Cambridge University Press; 2007.zbMATHCrossRefGoogle Scholar
  4. 4.
    Crochemore M, Vérin R. On compact directed acyclic word graphs. In: Structures in logic et computer science, LNCS, vol. 1261; 1997, p. 192–211. https://doi.org/10.1007/3-540-63246-8_12.Google Scholar
  5. 5.
    Farach M. Optimal suffix tree construction with large alphabets. In: Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science; 1997. p. 137–43.Google Scholar
  6. 6.
    Ferragina P, Grossi R. The string B-tree: a new data structure for string search in external memory et its applications. J Assoc Comput Mach. 1999;46(2):236–80.zbMATHCrossRefGoogle Scholar
  7. 7.
    Gusfield D. Algorithms on strings, trees and sequences. Cambridge: Cambridge University Press; 1997.zbMATHCrossRefGoogle Scholar
  8. 8.
    Kärkkäinen J, Sanders P. Simple linear work suffix array construction. In: Proceedings of the 30th International Colloquium on Automata, Languages, and Programming; 2003. p. 943–55. http://dblp.uni-trier.de/rec/bib/conf/icalp/KarkkainenS03.CrossRefGoogle Scholar
  9. 9.
    Kasai T, Lee G, Arimura H, Arikawa S, Park K. Linear-time longest-common-prefix computation in suffix arrays and its applications. In: Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching; 2001. p. 181–92.CrossRefGoogle Scholar
  10. 10.
    Kim DK, Sim JS, Park H, Park K. Linear-time construction of suffix arrays. In: Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching; 2003. p. 186–99.CrossRefGoogle Scholar
  11. 11.
    Ko P, Aluru S. Space efficient linear time construction of suffix arrays. In: Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching; 2003. p. 200–10.CrossRefGoogle Scholar
  12. 12.
    Kurtz S. Reducing the space requirement of suffix trees. Softw Pract Exper. 1999;29(13):1149–71.CrossRefGoogle Scholar
  13. 13.
    Manber U, Myers G. Suffix arrays: a new method for on-line string searches. SIAM J Comput. 1993;22(5):935–48.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    McCreight EM. A space-economical suffix tree construction algorithm. J Algorithms. 1976;23(2):<?pag ?>262–72.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Nong G, Zhang S, Chan WH. Linear suffix array construction by almost pure induced-sorting. In: Proceedings of the Data Compression Conference; 2009. p. 193–202.Google Scholar
  16. 16.
    Ohlebusch E. Bioinformatics algorithms: sequence analysis, genome rearrangements, and phylogenetic reconstruction, Oldenbusch Verlag; 2013.zbMATHGoogle Scholar
  17. 17.
    Ukkonen E. On-line construction of suffix trees. Algorithmica. 1995;14(3):249–60.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Weiner P. Linear pattern matching algorithm. In: Proceedings of the 14th Annual IEEE Symposium on Switching et Automata Theory; 1973. p. 1–11.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.King’s College LondonLondonUK
  2. 2.Université Paris-EstParisFrance
  3. 3.Université de RouenRouenFrance