Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Visual Data Mining

  • Simeon J. Simoff
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1121

Synonyms

Immersive data mining; VDM; Visual analysis; Visual data analysis; Visual discovery

Definition

Visual data mining (VDM) is the process of interaction and analytical reasoning with one or more visual representations of abstract data. The process may lead to the visual discovery of robust patterns in these data or provide some guidance for the application of other data mining and analytics techniques. It facilitates analysts in obtaining deeper understanding of the underlying structures in a data set. The process relies on the tight interconnectedness of tasks, selection of visual representations, the corresponding set of interactive manipulations, and respective analytical techniques. Discovered patterns form the information and knowledge utilized in decision making.

Historical Background

Visual exploration of large data sets had been used as a complementary technique to data mining in order to obtain additional information about the data set. Since the early 1990s there has...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Ankerst M. Visual data mining. Faculty of Mathematics and Computer Science, University of Munich, Munich. 2000.Google Scholar
  2. 2.
    Chen C. Information visualization: beyond the horizon. London: Springer; 2004.Google Scholar
  3. 3.
    Chittaro L, Combi C, Trapasso G. Data mining on temporal data: a visual approach and its clinical application to hemodialysis. J Visual Lang Comput. 2003;14(6):591–620.CrossRefGoogle Scholar
  4. 4.
    Demšar UK. Investigating visual exploration of geospatial data: an exploratory usability experiment for visual data mining. Comput Environ Urban. 2007;31(5):551–71.CrossRefGoogle Scholar
  5. 5.
    de Oliveira F, Crisina M, Levkowitz H. From visual data exploration to visual data mining: a survey. IEEE Trans Vis Comput Gr. 2003;9(3):378–94.CrossRefGoogle Scholar
  6. 6.
    Isenberg P, Tang A, Carpendale S. An exploratory study of visual information analysis. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; 2008.Google Scholar
  7. 7.
    Keim DA, Mansmann F, Schneidewind J, Ziegler H. Challenges in visual data analysis. In: Proceedings of the International Conference on Information Visualization; 2006.Google Scholar
  8. 8.
    Keim DA, North SC. Visual data mining in large geospatial point sets. IEEE Comput Graph. 2004;24(5):36–44.CrossRefGoogle Scholar
  9. 9.
    Keim DA, Sips M, Ankerst M. Visual data-mining techniques. In: Hansen CD, Johnson CR, editors. Visualization handbook. Amsterdam: Johnson Elsevier; 2005. p. 831–43.CrossRefGoogle Scholar
  10. 10.
    Kovalerchuk B, Schwing J, editors. Visual and spatial analysis: advances in data mining, reasoning, and problem solving. Dordrecht: Springer; 2004.zbMATHGoogle Scholar
  11. 11.
    Niggemann O. Visual data mining of graph-based data. Department of Mathematics and Computer Science, University of Paderborn, Paderborn, Germany. 2001.Google Scholar
  12. 12.
    Shneiderman B. Inventing discovery tools: combining information visualization with data mining, In: Proceedings of the Discovery Science; 2001. p. 17–28.zbMATHCrossRefGoogle Scholar
  13. 13.
    Simoff SJ, Böhlen M, Mazeika A, editors. Visual data mining: theory, techniques and tools for visual analytics. Heidelberg: Springer; 2008.Google Scholar
  14. 14.
    Soukup T, Davidson I. Visual data mining: techniques and tools for data visualization and mining. London: Wiley; 2002.Google Scholar
  15. 15.
    Thomas JJ, Cook KA. Illuminating the path: the research and development agenda for visual analytics. Silver Spring: IEEE CS Press; 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Western SydneySydneyAustralia

Section editors and affiliations

  • Daniel A. Keim
    • 1
  1. 1.Computer Science DepartmentUniversity of KonstanzKonstanzGermany