Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Data Replication

  • Bettina KemmeEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_110


Database replication; Replication


Using data replication, each logical data item of a database has several physical copies each of them located on a different node, also referred to as a site (typically a physical machine). Depending on the context and the type of replication architecture, the term replica can refer to one of the physical copies of a particular data item or to an entire site with all its data copies. Data replication can serve different purposes. Firstly, it can be used to increase availability and provide fault tolerance since the data can, in principle, be accessed as long as one replica is available. Secondly, it can provide low response times in wide-area settings. By storing replicas close to users that want to access the data, replication allows fast local access. Thirdly, access requests can be distributed across the replicas. When the incoming load increases, new replicas can be added to the system, achieving a higher throughput. Thus,...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Aguilera MK, Terry DB. The many faces of consistency. IEEE Data Eng Bull. 2016;39(1):3–13.Google Scholar
  2. 2.
    Almeida S, Leitão J, Rodrigues LET. Chainreaction: a causal+ consistent datastore based on chain replication. In: Proceedings of the 8th ACM SIGOPS/EuroSys European Conference on Computer Systems; 2013. p. 85–98.Google Scholar
  3. 3.
    Alonso G, Charron-Bost B, Pedone F, Schiper A, editors. Seminar: a 30-year perspective on replication. Monte Verita; 2007.Google Scholar
  4. 4.
    Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and recovery in database systems. Reading: Addison Wesley; 1987.Google Scholar
  5. 5.
    Breitbart Y, Komondoor R, Rastogi R, Seshadri S, Silberschatz A. Update propagation protocols for replicated databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 97–108.Google Scholar
  6. 6.
    Budhiraja N, Marzullo K, Schneider FB, Toueg S. The primary-backup approach. In: Mullender S, editor. Distributed systems. 2nd ed. Reading: Addison Wesley; 1993. p. 199–216.Google Scholar
  7. 7.
    Cabrera L-F, Pâris J-F, editors. In: Proceedings of the 1st Workshop on Management of Replicated Data; 1990.Google Scholar
  8. 8.
    Corbett JC, Dean J, Epstein M, Fikes A, Frost C, Furman JJ, Ghemawat S, Gubarev A, Heiser C, Hochschild P, Hsieh WC, Kanthak S, Kogan E, Li H, Lloyd A, Melnik S, Mwaura D, Nagle D, Quinlan S, Rao R, Rolig L, Saito Y, Szymaniak M, Taylor C, Wang R, Woodford D. Spanner: Google’s globally distributed database. ACM Trans Comput Syst. 2013;31(3):8.CrossRefGoogle Scholar
  9. 9.
    Kemme B, editor. Data consistency in the cloud. IEEE Data Eng Bull. 2015;38(1).Google Scholar
  10. 10.
    Kemme B, editor. Data consistency across research communities. IEEE Data Eng Bull. 2016;39(1).Google Scholar
  11. 11.
    Faleiro JM, Abadi DJ. FIT: a distributed database performance tradeoff. IEEE Data Eng Bull. 2015;38(1):10–7.Google Scholar
  12. 12.
    Gilbert S, Lynch NA. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News. 2002;33(2): 51–9.CrossRefGoogle Scholar
  13. 13.
    Gray J, Helland P, O’Neil P, Shasha D. The dangers of replication and a solution. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1996. p. 173–82.CrossRefGoogle Scholar
  14. 14.
    Guerraoui R, Pavlovic M, Seredinschi D-A. Trade-offs in replicated systems. IEEE Data Eng Bull. 2016;39(1):14–26.Google Scholar
  15. 15.
    Li C, Porto D, Clement A, Gehrke J, Preguiça NM, Rodrigues R. Making geo-replicated systems fast as possible, consistent when necessary. In: Proceedings of the 10th USENIX Symposium on Operating System Design and Implementation; 2012. p. 265–78.Google Scholar
  16. 16.
    Lin Y, Kemme B, Patiño-Martínez M, Jiménez-Peris R. Middleware based data replication providing snapshot isolation. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2005. p. 419–30.Google Scholar
  17. 17.
    Lv Q, Cao P, Cohen E, Li K, Shenker S. Search and replication in unstructured peer-to-peer networks. In: Proceedings of the 16th Annual International Conference on Supercomputing; 2002. p. 84–95.Google Scholar
  18. 18.
    Mahmoud HA, Nawab F, Pucher A, Agrawal D, El Abbadi A. Low-latency multi-datacenter databases using replicated commit. Proc VLDB Endow. 2013;6(9):661–72.CrossRefGoogle Scholar
  19. 19.
    Röhm U, Böhm K, Schek H-J, Schuldt H. FAS - a freshness-sensitive coordination middleware for a cluster of OLAP components. In: Proceedings of the 28th International Conference on Very Large Data Bases; 2002. p. 754–65.CrossRefGoogle Scholar
  20. 20.
    Saito Y, Shapiro M. Optimistic replication. ACM Comput Surv. 2005;37(1):42–81.CrossRefzbMATHGoogle Scholar
  21. 21.
    Satyanarayanan M, Kistler JJ, Kumar P, Okasaki ME, Siegel EH, Steere DC. Coda: a highly available file system for a distributed workstation environment. IEEE Trans Comput. 1990;39(4):447–59.CrossRefGoogle Scholar
  22. 22.
    Schneider FB. Replication management using the state-machine approach. In: Mullender S, editor. Distributed systems. 2nd ed. Reading: Addison Wesley; 1993. p. 169–98.Google Scholar
  23. 23.
    Sivasubramanian S, Szymaniak M, Pierre G, van Steen M. Replication for web hosting systems. ACM Comput Surv. 2004;36(3):291–334.CrossRefGoogle Scholar
  24. 24.
    Sovran Y, Power R, Aguilera MK, Li J. Transactional storage for geo-replicated systems. In: Proceedings of the 23rd ACM Symposium on Operating System Principles; 2011. p. 385–400.Google Scholar
  25. 25.
    Terry DB, Theimer M, Petersen K, Demers AJ, Spreitzer M, Hauser C. Managing update conflicts in Bayou, a weakly connected replicated storage system. In: Proceedings of the 15th ACM Symposium on Operating System Principles; 1995. p. 172–83.Google Scholar
  26. 26.
    Wiesmann M, Schiper A. Comparison of database replication techniques based on total order broadcast. IEEE Trans Knowl Data Eng. 2005;17(4):551–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Computer ScienceMcGill UniversityMontrealCanada