Encyclopedia of Law and Economics

2019 Edition
| Editors: Alain Marciano, Giovanni Battista Ramello

Shapley Value

  • André CasajusEmail author
  • Helfried Labrenz
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7753-2_437

Definition

The Shapley value (Shapley 1953) probably is the most eminent (single-valued) solution concept for cooperative games with transferable utility (TU games)1. A (TU) game is a pair (N, v) consisting of a nonempty and finite set of players N and a coalition function\( v\in \mathbb{V}(N):= \left\{f:2N\to \mathrm{\mathbb{R}}|f\left(\O \right)=0\right\} \)

This is a preview of subscription content, log in to check access.

References

  1. Casajus A, Labrenz H, Hiller T (2009) Majority shareholder protection by variable qualified majority rules. Eur J Law Econ 28(1):9–18CrossRefGoogle Scholar
  2. Leech D (1988) The relationship between shareholding concentration and shareholder voting power in British companies: a study of the application of power indices for simple games. Manag Sci 34(4):509–527CrossRefGoogle Scholar
  3. Newman DP (1981) An investigation of the distribution of power in the APB and FASB. J Account Res 19(1):247–262CrossRefGoogle Scholar
  4. Peleg B, Sudhölter P (2007) Introduction to the theory of cooperative games. In: Theory and decision library C, vol 34, 2nd edn. Springer, New YorkGoogle Scholar
  5. Roth AE, Verrecchia RE (1979) The Shapley value as applied to cost allocation: a reinterpretation. J Account Res 17(1):295–303CrossRefGoogle Scholar
  6. Shapley LS (1953) A value for n-person games. In: Kuhn H, Tucker A (eds) Contributions to the theory of games, vol II. Princeton University Press, Princeton, pp 307–317Google Scholar
  7. Shapley LS, Shubik M (1954) A method for evaluating the distribution of power in a committee system. Am Polit Sci Rev 48:787–792CrossRefGoogle Scholar
  8. Shubik M (1962) Incentives, decentralized control, the assignment of joint costs, and internal pricing. Manag Sci 8(3):325–343CrossRefGoogle Scholar
  9. Young HP (1985) Monotonic solutions of cooperative games. Int J Game Theory 14:65–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.HHL Leipzig Graduate School of ManagementLeipzigGermany
  2. 2.Institut für Unternehmensrechnung, Finanzierung und Besteuerung, Wirtschaftswissenschaftliche FakultätUniversität LeipzigLeipzigGermany
  3. 3.LSI Leipziger Spieltheoretisches InstitutLeipzigGermany