Artificial Intelligence Approach in Melanoma
- 3 Citations
- 331 Downloads
Abstract
Since its inception in the mid-twentieth century, the field of artificial intelligence (AI) has undergone numerous transformations and retreats. Using large datasets, powerful computers, and modern computational methods, the subset of AI known as machine learning can identify complex patterns in real-world data, yielding observations, associations, and predictions that can match or exceed human capabilities. After decades of promise, the field stands poised to influence a broad range of human endeavors, from the most complex strategic games to autonomous vehicle navigation, financial engineering, and health care. Therefore, the purpose of this chapter is to provide an introduction to AI approaches and medical applications while elaborating on the role of AI in malignant melanoma detection and diagnosis from a healthcare provider and consumer perspective. It is critical that we continue to balance the opportunity and threat of AI in malignant melanoma, as this technology becomes more robust to maximize an effective implementation.
Keywords
Artificial intelligence Machine learning Dermatology Dermoscopy Medical imaging Imaging databases Melanoma Skin cancerNotes
Acknowledgments
We thank Delaney Stratton, RN for her valuable editorial and artistic support.
References
- Abdel-Hamid O, Mohamed A-r, Jiang H, Deng L, Penn G, Yu D (2014) Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Lang Process 22(10):1533–1545CrossRefGoogle Scholar
- Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC (2018) Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digit Med 1(1):39CrossRefGoogle Scholar
- Adamson AS, Smith A (2018) Machine learning and health care disparities in dermatology. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2018.2348CrossRefGoogle Scholar
- Alzheimer’s Disease Neuroimaging Initiative (2018). http://adni.loni.usc.edu/
- Anderberg MR (1973) Cluster analysis for applications. Office of the Assistant for Study Support Kirtland AFB N MEXGoogle Scholar
- Anyanwu CO, Lipoff JB (2015) Smartphones, photography, and security in dermatology. J Am Acad Dermatol 72(1):193–195. https://doi.org/10.1016/j.jaad.2014.09.035CrossRefPubMedGoogle Scholar
- Argenziano G, Fabbrocini G, Carli P, De Giorgi V, Sammarco E, Delfino M (1998) Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Arch Dermatol 134(12):1563. https://doi.org/10.1001/archderm.134.12.1563CrossRefPubMedGoogle Scholar
- Argenziano G, Soyer HP, Chimenti S, Talamini R, Corona R, Sera F, Binder M, Cerroni L, De Rosa G, Ferrara G (2003) Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. J Am Acad Dermatol 48(5):679–693CrossRefGoogle Scholar
- Bakos RM, Blumetti TP, Roldán-Marín R, Salerni G (2018) Noninvasive imaging tools in the diagnosis and treatment of skin cancers. Am J Clin Dermatol 19(S1):3–14. https://doi.org/10.1007/s40257-018-0367-4CrossRefPubMedPubMedCentralGoogle Scholar
- Barata C, Marques JS, Celebi ME (2013) Towards an automatic bag-of-features model for the classification of dermoscopy images: the influence of segmentation. Paper presented at the 2013 8th international symposium on image and signal processing and analysis (ISPA), 2013/09Google Scholar
- Barata C, Ruela M, Francisco M, Mendonca T, Marques JS (2014) Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst J 8(3):965–979. https://doi.org/10.1109/jsyst.2013.2271540CrossRefGoogle Scholar
- Barata C, Celebi E, Marques JS, Rozeira J (2016) Clinically inspired analysis of dermoscopy images using a generative model. Comput Vis Image Underst 151:124–137. https://doi.org/10.1016/j.cviu.2015.09.011CrossRefGoogle Scholar
- Barata C, Celebi ME, Marques JS (2017) Development of a clinically oriented system for melanoma diagnosis. Pattern Recogn 69:270–285. https://doi.org/10.1016/j.patcog.2017.04.023CrossRefGoogle Scholar
- Barata F, Catarina A, Celebi EM, Marques J (2018) A survey of feature extraction in dermoscopy image analysis of skin cancer. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2845939CrossRefGoogle Scholar
- Baur C, Albarqouni S, Navab N (2018) Generating highly realistic images of skin lesions with GANs. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_28Google Scholar
- Beam AL, Kohane IS (2018) Big Data and machine learning in health care. JAMA 319(13):1317–1318. https://doi.org/10.1001/jama.2017.18391CrossRefPubMedGoogle Scholar
- Bejnordi BE, Veta M, Van Diest PJ, Van Ginneken B, Karssemeijer N, Litjens G, Van Der Laak JAWM, Hermsen M, Manson QF, Balkenhol M (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210CrossRefGoogle Scholar
- Bethard S, Savova G, Chen W-T, Derczynski L, Pustejovsky J, Verhagen M (2016) Semeval-2016 task 12: clinical tempeval. In: 10th international workshop on semantic evaluation (SemEval-2016). Association for Computer Linguistics, San Diego, pp 1052–1062. https://doi.org/10.18653/v1/S16-1165
- Binder M (1995) Epiluminescence microscopy. A useful tool for the diagnosis of pigmented skin lesions for formally trained dermatologists. Arch Dermatol 131(3):286–291. https://doi.org/10.1001/archderm.131.3.286CrossRefPubMedGoogle Scholar
- Bissoto A, Perez F, Valle E, Avila S (2018) Skin lesion synthesis with generative adversarial networks. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_32Google Scholar
- Börve A, Gyllencreutz J, Terstappen K, Backman E, Aldenbratt A, Danielsson M, Gillstedt M, Sandberg C, Paoli J (2015) Smartphone teledermoscopy referrals: a novel process for improved triage of skin cancer patients. Acta Derm Venereol 95(2):186–190. https://doi.org/10.2340/00015555-1906CrossRefPubMedGoogle Scholar
- Burlina P, Joshi N, Ng E, Billings S, Rebman A, Aucott J (2018) Skin image analysis for erythema migrans detection and automated lyme disease referral. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_26Google Scholar
- Caffery LJ, Clunie D, Curiel-Lewandrowski C, Malvehy J, Soyer HP, Halpern AC (2018) Transforming dermatologic imaging for the digital era: metadata and standards. J Digit Imaging 31(4):568–577. https://doi.org/10.1007/s10278-017-0045-8CrossRefPubMedGoogle Scholar
- Cascinelli N, Ferrario M, Tonelli T, Leo E (1987) A possible new tool for clinical diagnosis of melanoma: the computer. J Am Acad Dermatol 16(2):361–367CrossRefGoogle Scholar
- Celebi ME (2014) Partitional clustering algorithms. Springer, BerlinGoogle Scholar
- Celebi ME, Aydin K (2016) Unsupervised learning algorithms. Springer, ChamCrossRefGoogle Scholar
- Celebi ME, Zornberg A (2014) Automated quantification of clinically significant colors in dermoscopy images and its application to skin lesion classification. IEEE Syst J 8(3):980–984. https://doi.org/10.1109/jsyst.2014.2313671CrossRefGoogle Scholar
- Celebi ME, Aslandogan YA, Stoecker WV, Iyatomi H, Oka H, Chen X (2007a) Unsupervised border detection in dermoscopy images. Skin Res Technol 13(4): 454–462. https://doi.org/10.1111/j.1600-0846.2007.00251.xCrossRefPubMedCentralGoogle Scholar
- Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV, Moss RH (2007b) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373. https://doi.org/10.1016/j.compmedimag.2007.01.003CrossRefPubMedPubMedCentralGoogle Scholar
- Celebi ME, Iyatomi H, Stoecker WV, Moss RH, Rabinovitz HS, Argenziano G, Soyer HP (2008) Automatic detection of blue-white veil and related structures in dermoscopy images. Comput Med Imaging Graph 32(8):670–677. https://doi.org/10.1016/j.compmedimag.2008.08.003CrossRefPubMedPubMedCentralGoogle Scholar
- Celebi ME, Iyatomi H, Schaefer G, Stoecker WV (2009) Lesion border detection in dermoscopy images. Comput Med Imaging Graph 33(2):148–153. https://doi.org/10.1016/j.compmedimag.2008.11.002CrossRefPubMedPubMedCentralGoogle Scholar
- Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210CrossRefGoogle Scholar
- Celebi M, Wen Q, Iyatomi H, Shimizu K, Zhou H, Schaefer G (2015a) A state-of-the-art survey on lesion border detection in dermoscopy images. Dermoscopy image analysis. CRC Press, Boca Raton. https://doi.org/10.1201/b19107-5CrossRefGoogle Scholar
- Celebi ME, Mendonça T, Marques JS (2015b) Dermoscopy image analysis. Digital imaging and computer vision. CRC Press, Boca Raton. https://doi.org/10.1201/b19107CrossRefGoogle Scholar
- Celebi EM, Codella N, Halpern A (2019) Dermoscopy image analysis: overview and future directions. IEEE J Biomed Health, to appearGoogle Scholar
- Chao E, Meenan CK, Ferris LK (2017) Smartphone-based applications for skin monitoring and melanoma detection. Dermatol Clin 35(4):551–557. https://doi.org/10.1016/j.det.2017.06.014CrossRefPubMedGoogle Scholar
- Che Z, Kale D, Li W, Bahadori MT, Liu Y (2015) Deep computational phenotyping. In: Proceedings of hte 21st ACM SIGKDD international conference on knowledge discovery and data mining, New York, NY, 2015. ACM, pp 507–516Google Scholar
- Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392:2388CrossRefGoogle Scholar
- Coates SJ, Kvedar J, Granstein RD (2015) Teledermatology: from historical perspective to emerging techniques of the modern era: Part I: history, rationale, and current practice. J Am Acad Dermatol 72(4): 563–574; quiz 575–566. https://doi.org/10.1016/j.jaad.2014.07.061CrossRefPubMedGoogle Scholar
- Codella N, Cai J, Abedini M, Garnavi R, Halpern A, Smith JR (2015) Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images. In: Machine learning in medical imaging. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-24888-2_15CrossRefGoogle Scholar
- Codella NCF, Nguyen QB, Pankanti S, Gutman DA, Helba B, Halpern AC, Smith JR (2017) Deep learning ensembles for melanoma recognition in dermoscopy images. IBM J Res Dev 61(4/5):5:1–5:15. https://doi.org/10.1147/jrd.2017.2708299CrossRefGoogle Scholar
- Codella NCF, Anderson D, Philips T, Porto A, Massey K, Snowdon J, Feris R, Smith J (2018a) Segmentation of both diseased and healthy skin from clinical photographs in a primary care setting. Paper presented at the 2018 40th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2018/07Google Scholar
- Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler H, Halpern A (2018b) Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). Paper presented at the 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), 2018/04Google Scholar
- Codella NCF, Lin C-C, Halpern A, Hind M, Feris R, Smith JR (2018c) Collaborative Human-AI (CHAI): evidence-based interpretable melanoma classification in dermoscopic images. In: Understanding and interpreting machine learning in medical image computing applications. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-02628-8_11CrossRefGoogle Scholar
- Corbo MD, Vender R, Wismer J (2012) Comparison of dermatologists’ and nondermatologists’ diagnostic accuracy for malignant melanoma. J Cutan Med Surg 16(4):272–280. https://doi.org/10.1177/120347541201600410CrossRefPubMedGoogle Scholar
- Cukras AR (2013) On the comparison of diagnosis and management of melanoma between dermatologists and MelaFind. JAMA Dermatol 149(5):622. https://doi.org/10.1001/jamadermatol.2013.3405CrossRefPubMedGoogle Scholar
- Dehzad F, Hilhorst C, de Bie C, Claassen E (2014) Adopting health apps, what’s hindering doctors and patients? Health 6(16):2204CrossRefGoogle Scholar
- Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87CrossRefGoogle Scholar
- Dorairaj JJ, Healy GM, McInerney A, Hussey AJ (2017) Validation of a melanoma risk assessment smartphone application. Dermatol Surg 43(2):299–302. https://doi.org/10.1097/dss.0000000000000916CrossRefPubMedGoogle Scholar
- Dreiseitl S, Binder M, Hable K, Kittler H (2009) Computer versus human diagnosis of melanoma: evaluation of the feasibility of an automated diagnostic system in a prospective clinical trial. Melanoma Res 19(3):180–184. https://doi.org/10.1097/cmr.0b013e32832a1e41CrossRefPubMedGoogle Scholar
- Duda R, Hart P, Stork D (2007) Pattern classification, vol 24. Journal of Classification, vol 2. Wiley, New YorkGoogle Scholar
- Errichetti E, Stinco G (2016) Dermoscopy in general dermatology: a practical overview. Dermatol Ther 6(4):471–507. https://doi.org/10.1007/s13555-016-0141-6CrossRefGoogle Scholar
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115CrossRefGoogle Scholar
- Eykholt K, Evtimov I, Fernandes E, Li B, Rahmati A, Chaowei X, Prakash A, Tadayoshi K, Song D (2017) Robust physical-world attacks on machine learning models. arXiv preprint arXiv:170708945Google Scholar
- Fagnant DJ, Kockelman K (2015) Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp Res A Policy Pract 77: 167–181. https://doi.org/10.1016/j.tra.2015.04.003CrossRefGoogle Scholar
- Federal Trade Commission (2015) FTC cracks down on marketers of “Melanoma Detection” apps. https://www.ftc.gov/news-events/press-releases/2015/02/ftc-cracks-down-marketers-melanoma-detection-apps
- Fenton JJ (2015) Is it time to stop paying for computer-aided mammography? JAMA Intern Med 175(11): 1837–1838CrossRefGoogle Scholar
- Fernández-Delgado M, Cernadas E, Barro S, Amorim D (2014) Do we need hundreds of classifiers to solve real world classification problems? J Mach Learn Res 15(1):3133–3181Google Scholar
- Ferrero NA, Morrell DS, Burkhart CN (2013) Skin scan: a demonstration of the need for FDA regulation of medical apps on iPhone. J Am Acad Dermatol 68(3):515–516. https://doi.org/10.1016/j.jaad.2012.10.045CrossRefPubMedGoogle Scholar
- Fink C, Jaeger C, Jaeger K, Haenssle HA (2017) Diagnostic performance of the MelaFind device in a real-life clinical setting. J Dtsch Dermatol Ges 15(4):414–419. https://doi.org/10.1111/ddg.13220CrossRefPubMedGoogle Scholar
- Finnane A, Curiel-Lewandrowski C, Wimberley G, Caffery L, Katragadda C, Halpern A, Marghoob AA, Malvehy J, Kittler H, Hofmann-Wellenhof R, Abraham I, Soyer HP, International Society of Digital Imaging of the Skin (ISDIS) for the International Skin Imaging Collaboration (ISIC) (2017) Proposed technical guidelines for the acquisition of clinical images of skin-related conditions. JAMA Dermatol 153(5):453–457. https://doi.org/10.1001/jamadermatol.2016.6214CrossRefPubMedGoogle Scholar
- Flaten HK, St Claire C, Schlager E, Dunnick CA, Dellavalle RP (2018) Growth of mobile applications in dermatology – 2017 update. Dermatol Online J 24(2):1–4Google Scholar
- Freudenstein U, Verne J (2001) A national screening programme for diabetic retinopathy: needs to learn the lessons of existing screening programmes. BMJ 24(2):1–4Google Scholar
- Ge Z, Demyanov S, Chakravorty R, Bowling A, Garnavi R (2017) Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-66179-7_29CrossRefGoogle Scholar
- Gendreau JL, Gemelas J, Wang M, Capulong D, Lau C, Bratten DM, Dougall B, Markham C, Raugi GJ (2017) Unimaged melanomas in store-and-forward teledermatology. Telemed J E Health 23(6):517–520. https://doi.org/10.1089/tmj.2016.0170CrossRefPubMedGoogle Scholar
- Goebel R, Chander A, Holzinger K, Lecue F, Akata Z, Stumpf S, Kieseberg P, Holzinger A (2018) Explainable AI: the new 42? Proceedings of the second IFIP TC 5, TC 8/WG 8.4, 8.9, TC 12/WG 12.9. In: International cross-domain conference, 2018. Springer, pp 295–303Google Scholar
- Gonzalez Diaz I (2018) DermaKNet: incorporating the knowledge of dermatologists to Convolutional Neural Networks for skin lesion diagnosis. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2806962CrossRefGoogle Scholar
- Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MAGoogle Scholar
- Gottlieb S (2018) FDA budget matters: advancing innovation in digital health. https://www.fda.gov/NewsEvents/Newsroom/FDAVoices/ucm621675.htm
- Gu Y, Partridge Y-P, Zhou J (2018) A hyperspectral dermoscopy dataset for melanoma detection. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_29Google Scholar
- Guarracino MR, Maddalena L (2018) SDI+: a novel algorithm for segmenting dermoscopic images. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2808970CrossRefGoogle Scholar
- Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410CrossRefGoogle Scholar
- Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep learning for visual understanding: a review. Neurocomputing 187:27–48CrossRefGoogle Scholar
- Hall S, Murchie P (2014) Can we use technology to encourage self-monitoring by people treated for melanoma? A qualitative exploration of the perceptions of potential recipients. Support Care Cancer 22(6): 1663–1671. https://doi.org/10.1007/s00520-014-2133-3CrossRefPubMedGoogle Scholar
- Hamilton AD, Brady RR (2012) Medical professional involvement in smartphone ‘apps’ in dermatology. Br J Dermatol 167(1):220–221. https://doi.org/10.1111/j.1365-2133.2012.10844.xCrossRefPubMedGoogle Scholar
- Han J, Pei J, Kamber M (2012) Data mining: concepts and techniques, 3rd edn. Elsevier, BurlingtonGoogle Scholar
- Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE (2018) Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. J Invest Dermatol 138(7):1529–1538. https://doi.org/10.1016/j.jid.2018.01.028CrossRefPubMedGoogle Scholar
- Hand DJ (1998) Data mining: statistics and more? Am Stat 52(2):112–118Google Scholar
- He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Paper presented at the 2016 IEEE conference on computer vision and pattern recognition (CVPR), 2016/06Google Scholar
- Heaton JB, Polson NG, Witte JH (2016) Deep learning in finance. arXiv preprint arXiv:160206561Google Scholar
- Hodgson T, Coiera E (2015) Risks and benefits of speech recognition for clinical documentation: a systematic review. J Am Med Inform Assoc 23(e1):e169–e179CrossRefGoogle Scholar
- Horsham C, Loescher LJ, Whiteman DC, Soyer HP, Janda M (2016) Consumer acceptance of patient-performed mobile teledermoscopy for the early detection of melanoma. Br J Dermatol 175(6):1301–1310. https://doi.org/10.1111/bjd.14630CrossRefPubMedGoogle Scholar
- Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. Paper presented at the 2017 IEEE conference on computer vision and pattern recognition (CVPR), 2017/07Google Scholar
- Jahanifar M, Zamani Tajeddin N, Mohammadzadeh Asl B, Gooya A (2018) Supervised saliency map driven segmentation of lesions in dermoscopic images. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2839647CrossRefGoogle Scholar
- Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc, Upper Saddle River, NJGoogle Scholar
- Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37CrossRefGoogle Scholar
- Janda M, Loescher LJ, Banan P, Horsham C, Soyer HP (2014) Lesion selection by melanoma high-risk consumers during skin self-examination using mobile teledermoscopy. JAMA Dermatol 150(6):656–658. https://doi.org/10.1001/jamadermatol.2013.7743CrossRefPubMedGoogle Scholar
- Jha S, Topol EJ (2016) Adapting to artificial intelligence: radiologists and pathologists as information specialists. JAMA 316(22):2353–2354. https://doi.org/10.1001/jama.2016.17438CrossRefPubMedGoogle Scholar
- Kansky K, Silver T, Mély DA, Eldawy M, Lázaro-Gredilla M, Lou X, Dorfman N, Sidor S, Phoenix S, George D (2017) Schema networks: zero-shot transfer with a generative causal model of intuitive physics. arXiv preprint arXiv:170604317Google Scholar
- Katragadda C, Finnane A, Soyer HP, Marghoob AA, Halpern A, Malvehy J, Kittler H, Hofmann-Wellenhof R, Da Silva D, Abraham I, Curiel-Lewandrowski C (2016) Technique standards for skin lesion imaging: a Delphi consensus statement. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2016.3949CrossRefGoogle Scholar
- Kawahara J, Hamarneh G (2018) Fully convolutional neural networks to detect clinical dermoscopic features. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2831680CrossRefGoogle Scholar
- Kawahara J, Daneshvar S, Argenziano G, Hamarneh G (2018) 7-Point checklist and skin lesion classification using multi-task multi-modal neural nets. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2824327CrossRefGoogle Scholar
- Kittler H, Pehamberger H, Wolff K, Binder M (2002) Diagnostic accuracy of dermoscopy. Lancet Oncol 3(3):159–165. https://doi.org/10.1016/s1470-2045(02)00679-4CrossRefPubMedGoogle Scholar
- Korotkov K, Garcia R (2012) Computerized analysis of pigmented skin lesions: a review. Artif Intell Med 56(2):69–90. https://doi.org/10.1016/j.artmed.2012.08.002CrossRefPubMedGoogle Scholar
- Korotkov K, Quintana J, Campos R, Jesus Silva MA, Iglesias P, Puig S, Malvehy J, Garcia R (2018) An improved skin lesion matching scheme in total body photography. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2855409CrossRefGoogle Scholar
- Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, Peng L, Webster DR (2018) Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125:1264CrossRefGoogle Scholar
- Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386CrossRefGoogle Scholar
- Kunde L, McMeniman E, Parker M (2013) Clinical photography in dermatology: ethical and medico-legal considerations in the age of digital and smartphone technology. Australas J Dermatol 54(3):192–197. https://doi.org/10.1111/ajd.12063CrossRefPubMedGoogle Scholar
- LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436. https://doi.org/10.1038/nature14539CrossRefPubMedGoogle Scholar
- Legg S, Hutter M (2007) Universal intelligence: a definition of machine intelligence. Mind Mach 17(4): 391–444CrossRefGoogle Scholar
- Li Y, Esteva A, Kuprel B, Novoa R, Ko J, Thrun S (2016) Skin cancer detection and tracking using data synthesis and deep learning. arXiv preprint arXiv:161201074Google Scholar
- Li H, He X, Zhou F, Yu Z, Ni D, Chen S, Wang T, Lei B (2018a) Dense deconvolutional network for skin lesion segmentation. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2859898CrossRefGoogle Scholar
- Li X, Yu L, Fu C-W, Heng P-A (2018b) Deeply supervised rotation equivariant network for lesion segmentation in dermoscopy images. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_25Google Scholar
- Lim HW, Collins SAB, Resneck JS Jr, Bolognia JL, Hodge JA, Rohrer TA, Van Beek MJ, Margolis DJ, Sober AJ, Weinstock MA, Nerenz DR, Smith Begolka W, Moyano JV (2017) The burden of skin disease in the United States. J Am Acad Dermatol 76(5):958–972.e952. https://doi.org/10.1016/j.jaad.2016.12.043CrossRefPubMedGoogle Scholar
- Lip GYH, Nieuwlaat R, Pisters R, Lane DA, Crijns HJGM (2010) Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 137(2):263–272CrossRefGoogle Scholar
- Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRefGoogle Scholar
- Liu Y, Kohlberger T, Norouzi M, Dahl GE, Smith JL, Mohtashamian A, Olson N, Peng LH, Hipp JD, Stumpe MC (2018) Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch Pathol Lab MedGoogle Scholar
- Maier T, Kulichova D, Schotten K, Astrid R, Ruzicka T, Berking C, Udrea A (2015) Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result. J Eur Acad Dermatol Venereol 29(4):663–667. https://doi.org/10.1111/jdv.12648CrossRefPubMedGoogle Scholar
- March J, Hand M, Grossman D (2015) Practical application of new technologies for melanoma diagnosis: Part I. Noninvasive approaches. J Am Acad Dermatol 72(6):929–941; quiz 941–942. https://doi.org/10.1016/j.jaad.2015.02.1138CrossRefPubMedGoogle Scholar
- Marcus G (2018) Deep learning: a critical appraisal. arXiv preprint arXiv:180100631Google Scholar
- Matsunaga K, Hamada A, Minagawa A, Koga H (2017) Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble. arXiv preprint arXiv:170303108Google Scholar
- Mendonca T, Ferreira PM, Marques JS, Marcal ARS, Rozeira J (2013) A dermoscopic image database for research and benchmarking. Paper presented at the 2013 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013/07Google Scholar
- Milam EC, Leger MC (2018) Use of medical photography among dermatologists: a nationwide online survey study. J Eur Acad Dermatol Venereol 32(10): 1804–1809. https://doi.org/10.1111/jdv.14839CrossRefPubMedGoogle Scholar
- Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep 6:26094CrossRefGoogle Scholar
- Mishra NK, Celebi ME (2016) An overview of melanoma detection in dermoscopy images using image processing and machine learning. arXiv preprint arXiv:160107843Google Scholar
- Mitchell TM (1997) Machine learning, vol 45, no 37. McGraw Hill, Burr Ridge, pp 870–877Google Scholar
- Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G, Petersen S, Beattie C, Sadik A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D (2015) Human-level control through deep reinforcement learning. Nature 518(7540):529–533. https://doi.org/10.1038/nature14236CrossRefPubMedGoogle Scholar
- Mobile Fact Sheet. (2018) Pew Research Center, Washington, DC. www.pewinternet.org/fact-sheet/mobile/
- Monheit G, Cognetta AB, Ferris L, Rabinovitz H, Gross K, Martini M, Grichnik JM, Mihm M, Prieto VG, Googe P, King R, Toledano A, Kabelev N, Wojton M, Gutkowicz-Krusin D (2011) The performance of MelaFind. Arch Dermatol 147(2):188. https://doi.org/10.1001/archdermatol.2010.302CrossRefPubMedGoogle Scholar
- Mounessa JS, Chapman S, Braunberger T, Qin R, Lipoff JB, Dellavalle RP, Dunnick CA (2018) A systematic review of satisfaction with teledermatology. J Telemed Telecare 24(4):263–270. https://doi.org/10.1177/1357633x17696587CrossRefPubMedGoogle Scholar
- Mukhopadhyay S, Feldman MD, Abels E, Ashfaq R, Beltaifa S, Cacciabeve NG, Cathro HP, Cheng L, Cooper K, Dickey GE (2018) Whole slide imaging versus microscopy for primary diagnosis in surgical pathology: a multicenter blinded randomized noninferiority study of 1992 cases (pivotal study). Am J Surg Pathol 42(1):39PubMedGoogle Scholar
- Multimodal Brain Tumor Segmentation Challenge 2017 (2017). https://www.med.upenn.edu/sbia/brats2017/rankings.html
- Murtagh F (1983) A survey of recent advances in hierarchical clustering algorithms. Comput J 26(4):354–359CrossRefGoogle Scholar
- Navarrete-Dechent C, Dusza SW, Liopyris K, Marghoob AA, Halpern AC, Marchetti MA (2018) Automated dermatological diagnosis: hype or reality? J Invest Dermatol 138(10):2277–2279. https://doi.org/10.1016/j.jid.2018.04.040CrossRefPubMedGoogle Scholar
- Navarro F, Escudero-Vinolo M, Bescos J (2018) Accurate segmentation and registration of skin lesion images to evaluate lesion change. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2825251CrossRefGoogle Scholar
- Ngoo A, Finnane A, McMeniman E, Tan JM, Janda M, Soyer HP (2018) Efficacy of smartphone applications in high-risk pigmented lesions. Australas J Dermatol 59(3):e175–e182. https://doi.org/10.1111/ajd.12599CrossRefPubMedGoogle Scholar
- Nguyen A, Yosinski J, Clune J (2015) Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. Paper presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015/06Google Scholar
- Nguyen P, Tran T, Wickramasinghe N, Venkatesh S (2017) Deepr: a convolutional net for medical records. IEEE J Biomed Health Inform 21(1):22–30CrossRefGoogle Scholar
- Nozdryn-Plotnicki A, Yap J, Yolland W (2018) Ensembling convolutional neural networks for skin cancer classification. International Skin Imaging Collaboration (ISIC) Challenge on Skin Image Analysis for Melanoma Detection. MICCAIGoogle Scholar
- Office of the Commissioner (2018) Press announcements – FDA permits marketing of artificial intelligence-based device to detect certain diabetes-related eye problems. https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm
- Pakhomov S, Pedersen T, Chute CG (2005) Abbreviation and acronym disambiguation in clinical discourse. In: AMIA annual symposium proceedings, 2005. American Medical Informatics Association, pp 589–593Google Scholar
- Pal A, Chaturvedi A, Garain U, Chandra A, Chatterjee R, Senapati S (2018) Severity assessment of psoriatic plaques using deep CNN based ordinal classification. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_27Google Scholar
- Perez F, Vasconcelos C, Avila S, Valle E (2018) Data augmentation for skin lesion analysis. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_33Google Scholar
- Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR (2018) Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2(3):158–164. https://doi.org/10.1038/s41551-018-0195-0CrossRefPubMedGoogle Scholar
- Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, Liu PJ, Liu X, Marcus J, Sun M (2018) Scalable and accurate deep learning with electronic health records. npj Digit Med 1(1):18CrossRefGoogle Scholar
- Rat C, Hild S, Rault Serandour J, Gaultier A, Quereux G, Dreno B, Nguyen JM (2018) Use of smartphones for early detection of melanoma: systematic review. J Med Internet Res 20(4):e135. https://doi.org/10.2196/jmir.9392CrossRefPubMedPubMedCentralGoogle Scholar
- Riaz F, Naeem S, Nawaz R, Coimbra MT (2018) Active contours based segmentation and lesion periphery analysis for characterization of skin lesions in dermoscopy images. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2832455CrossRefGoogle Scholar
- Rich E (1987) Artificial intelligence. In: Encyclopedia of artificial intelligence, vol 1. Wiley, New YorkGoogle Scholar
- Robson Y, Blackford S, Roberts D (2012) Caution in melanoma risk analysis with smartphone application technology. Br J Dermatol 167(3):703–704. https://doi.org/10.1111/j.1365-2133.2012.11046.xCrossRefPubMedGoogle Scholar
- Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-24574-4_28Google Scholar
- Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis 115(3): 211–252. https://doi.org/10.1007/s11263-015-0816-yCrossRefGoogle Scholar
- Russell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Malaysia; Pearson Education LimitedGoogle Scholar
- Sabbaghi M S, Aldeen M, Stoecker WV, Garnavi R (2018) Biologically inspired QuadTree colour detection in dermoscopy images of melanoma. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2841428CrossRefGoogle Scholar
- Sadeghi M, Chilana PK, Atkins MS (2018) How users perceive content-based image retrieval for identifying skin images. In: Understanding and interpreting machine learning in medical image computing applications. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-02628-8_16CrossRefGoogle Scholar
- Saez A, Acha B, Serrano A, Serrano C (2018) Statistical detection of colors in dermoscopic images with a texton-based estimation of probabilities. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2018.2823499CrossRefGoogle Scholar
- Salerni G, Terán T, Puig S, Malvehy J, Zalaudek I, Argenziano G, Kittler H (2012) Meta-analysis of digital dermoscopy follow-up of melanocytic skin lesions: a study on behalf of the International Dermoscopy Society. J Eur Acad Dermatol Venereol 27(7): 805–814. https://doi.org/10.1111/jdv.12032CrossRefPubMedGoogle Scholar
- Scharcanski J, Celebi ME (2013) Computer vision techniques for the diagnosis of skin cancer. Series in BioEngineering. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-39608-3CrossRefGoogle Scholar
- Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, Chen Y, Lillicrap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis D (2017) Mastering the game of Go without human knowledge. Nature 550:354. https://doi.org/10.1038/nature24270. https://www.nature.com/articles/nature24270#supplementary-informationCrossRefPubMedGoogle Scholar
- Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R (2017) Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 36:41–51CrossRefGoogle Scholar
- Spinks J, Janda M, Soyer HP, Whitty JA (2016) Consumer preferences for teledermoscopy screening to detect melanoma early. J Telemed Telecare 22(1):39–46. https://doi.org/10.1177/1357633x15586701CrossRefPubMedGoogle Scholar
- Steiner DF, MacDonald R, Liu Y, Truszkowski P, Hipp JD, Gammage C, Thng F, Peng L, Stumpe MC (2018) Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am J Surg Pathol 42(12):1636–1646. https://doi.org/10.1097/pas.0000000000001151CrossRefPubMedPubMedCentralGoogle Scholar
- STRATA Skin Sciences Inc (2017) Seeking Alpha. United States Secrutities and Exchange Commission https://seekingalpha.com/filing/3550049. Accessed 19 Nov 2018
- Sun X, Yang J, Sun M, Wang K (2016) A benchmark for automatic visual classification of clinical skin disease images. In: Computer vision – ECCV 2016. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-46466-4_13CrossRefGoogle Scholar
- Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R (2013) Intriguing properties of neural networks. arXiv preprint arXiv:13126199Google Scholar
- Szegedy C, Wei L, Yangqing J, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. Paper presented at the 2015 IEEE conference on computer vision and pattern recognition (CVPR), 2015/06Google Scholar
- Takeshita J (2018) Identifying disparities in dermatology. JAMA Dermatol 154(11):1251. https://doi.org/10.1001/jamadermatol.2018.2938CrossRefPubMedGoogle Scholar
- Thandiackal K, Goksel O (2018) A structure-aware convolutional neural network for skin lesion classification. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_34Google Scholar
- Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22):2211–2223CrossRefGoogle Scholar
- Tran T, Nguyen TD, Phung D, Venkatesh S (2015) Learning vector representation of medical objects via EMR-driven nonnegative restricted Boltzmann machines (eNRBM). J Biomed Inform 54:96–105CrossRefGoogle Scholar
- Tschandl P, Argenziano G, Razmara M, Yap J (2018a) Diagnostic accuracy of content-based dermatoscopic image retrieval with deep classification features. Br J Dermatol. https://doi.org/10.1111/bjd.17189
- Tschandl P, Rosendahl C, Akay BN, Argenziano G, Blum A, Braun RP, Cabo H, Gourhant J-Y, Kreusch J, Lallas A, Lapins J, Marghoob A, Menzies S, Neuber NM, Paoli J, Rabinovitz HS, Rinner C, Scope A, Soyer HP, Sinz C, Thomas L, Zalaudek I, Kittler H (2018b) Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2018.4378CrossRefGoogle Scholar
- Tschandl P, Rosendahl C, Kittler H (2018c) The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5:180161. https://doi.org/10.1038/sdata.2018.161CrossRefPubMedPubMedCentralGoogle Scholar
- U.S. Food and Drug (2015) Mobile medical applications: guidance for industry and Food and Drug Administration staff. https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM263366.pdf
- U.S. Food and Drug (2018) Digital Health Innovation Action Plan. https://www.fda.gov/downloads/MedicalDevices/DigitalHealth/UCM568735.pdf. Accessed 18 Dec 2018
- Uzuner Ö, South BR, Shen S, DuVall SL (2011) 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J Am Med Inform Assoc 18(5):552–556CrossRefGoogle Scholar
- Varadarajan AV, Poplin R, Blumer K, Angermueller C, Ledsam J, Chopra R, Keane PA, Corrado GS, Peng L, Webster DR (2018) Deep learning for predicting refractive error from retinal fundus images. Invest Ophthalmol Vis Sci 59(7):2861–2868CrossRefGoogle Scholar
- Venkatesh GM, Naresh YG, Little S, O’Connor NE (2018) A deep residual architecture for skin lesion segmentation. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_30Google Scholar
- Vesal S, Malakarjun Patil S, Ravikumar N, Maier AK (2018) A multi-task framework for skin lesion detection and segmentation. Lecture notes in computer science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-01201-4_31Google Scholar
- Vestergaard ME, Macaskill P, Holt PE, Menzies SW (2008) Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br J Dermatol. https://doi.org/10.1111/j.1365-2133.2008.08713.x
- Wang JV, Chapman LW, Keller M (2017a) Challenges to smartphone applications for melanoma detection. Dermatol Online J 23(2):1–2Google Scholar
- Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017b) Chestx-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE, pp 3462–3471Google Scholar
- Warshaw EM, Hillman YJ, Greer NL, Hagel EM, MacDonald R, Rutks IR, Wilt TJ (2011) Teledermatology for diagnosis and management of skin conditions: a systematic review. J Am Acad Dermatol 64(4):759–772. https://doi.org/10.1016/j.jaad.2010.08.026CrossRefPubMedGoogle Scholar
- Webster DE, Suver C, Doerr M, Mounts E, Domenico L, Petrie T, Leachman SA, Trister AD, Bot BM (2017) The Mole Mapper Study, mobile phone skin imaging and melanoma risk data collected using ResearchKit. Sci Data 4:170005. https://doi.org/10.1038/sdata.2017.5CrossRefPubMedPubMedCentralGoogle Scholar
- Wells R, Gutkowicz-Krusin D, Veledar E, Toledano A, Chen SC (2012) Comparison of diagnostic and management sensitivity to melanoma between dermatologists and MelaFind: a pilot study. Arch Dermatol 148(9):1083. https://doi.org/10.1001/archdermatol.2012.946CrossRefPubMedGoogle Scholar
- Winkelmann RR, Yoo J, Tucker N, White R, Rigel DS (2014) Assessment of a diagnostic predictive probability model provided by a multispectral digital skin lesion analysis device for melanoma and other high-risk pigmented lesions and its impact on biopsy decisions. J Clin Aesthet Dermatol 7(12):16PubMedPubMedCentralGoogle Scholar
- Wolf JA, Moreau JF, Akilov O, Patton T, English JC 3rd, Ho J, Ferris LK (2013) Diagnostic inaccuracy of smartphone applications for melanoma detection. JAMA Dermatol 149(4):422–426. https://doi.org/10.1001/jamadermatol.2013.2382CrossRefPubMedPubMedCentralGoogle Scholar
- Wolf JA, Moreau JF, Patton TJ, Winger DG, Ferris LK (2015) Prevalence and impact of health-related internet and smartphone use among dermatology patients. Cutis 95(6):323–328PubMedGoogle Scholar
- Yang J, Sun X, Jie L, Paul R (2018) Clinical skin lesion diagnosis using representations inspired by dermatologist criteria. In: Computer Vision and Pattern Recognition, Salt Lake City, UT. Computer Vision Foundation, pp 1258–1266Google Scholar
- Yoshida T, Celebi ME, Schaefer G, Iyatomi H (2016) Simple and effective pre-processing for automated melanoma discrimination based on cytological findings. Paper presented at the 2016 IEEE international conference on Big Data (Big Data), 2016/12Google Scholar
- Yu L, Chen H, Dou Q, Qin J, Heng P-A (2017) Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004. https://doi.org/10.1109/tmi.2016.2642839CrossRefPubMedGoogle Scholar
- Yuan Y, Lo Y-C (2017) Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J Biomed Health Inform 1-1. https://doi.org/10.1109/jbhi.2017.2787487CrossRefGoogle Scholar
- Zouridakis G, Wadhawan T, Situ N, Hu R, Yuan X, Lancaster K, Queen CM (2015) Melanoma and other skin lesion detection using smart handheld devices. Methods Mol Biol 1256:459–496. https://doi.org/10.1007/978-1-4939-2172-0_30CrossRefPubMedGoogle Scholar