Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Basal Ganglia: Globus Pallidus Cellular Models

  • Dieter JaegerEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_87-2


The globus pallidus is a part of the basal ganglia in the vertebrate brain. Cellular models of the globus pallidus are computer representations of the specific dynamics of globus pallidus neurons.

Detailed Description

Goals of Globus Pallidus Cellular Models

Detailed cellular models of globus pallidus (GP) neurons are typically constructed to better understand how they integrate synaptic input and how their intrinsic properties contribute to the input-output function of the GP. The exploration of GP function in larger network models is typically carried out using less detailed cell models. The level of complexity and biological realism best used for a GP neuron model depends on the questions one wants to address (Herz et al. 2006) and ranges from simple integrate-and-fire models to complex full morphological reconstructions with a full complement of ion channel types found in these neurons.

Models that Capture the Detailed Dynamic Properties of Globus Pallidus Neurons

The GP...

This is a preview of subscription content, log in to check access.


  1. Abdi A, Mallet N, Mohamed FY, Sharott A, Dodson PD, Nakamura KC, Suri S, Avery SV, Larvin JT, Garas FN, Garas SN, Vinciati F, Morin S, Bezard E, Baufreton J, Magill PJ (2015) Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J Neurosci 35:6667–6688CrossRefGoogle Scholar
  2. Ahn S, Zauber SE, Worth RM, Rubchinsky LL (2016) Synchronized Beta-band oscillations in a model of the Globus pallidus-subthalamic nucleus network under external input. Front Comput Neurosci 10:134CrossRefGoogle Scholar
  3. Bogacz R, Gurney K (2007) The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Comput 19:442–477CrossRefGoogle Scholar
  4. Bogacz R, Martin Moraud E, Abdi A, Magill PJ, Baufreton J (2016) Properties of neurons in external Globus pallidus can support optimal action selection. PLoS Comp Biol 12:e1005004CrossRefGoogle Scholar
  5. Cleary DR, Raslan AM, Rubin JE, Bahgat D, Viswanathan A, Heinricher MM, Burchiel KJ (2013) Deep brain stimulation entrains local neuronal firing in human globus pallidus internus. J Neurophysiol 109:978–987CrossRefGoogle Scholar
  6. Deister CA, Chan CS, Surmeier DJ, Wilson CJ (2009) Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in Globus pallidus neurons. J Neurosci 29:8452–8461CrossRefGoogle Scholar
  7. Deister CA, Dodla R, Barraza D, Kita H, Wilson CJ (2013) Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 109:497–506CrossRefGoogle Scholar
  8. Dostrovsky JO, Hutchison WD, Lozano AM (2002) The globus pallidus, deep brain stimulation, and Parkinson's disease. Neuroscientist 8:284–290PubMedGoogle Scholar
  9. Edgerton JR, Hanson JE, Gunay C, Jaeger D (2010) Dendritic sodium channels regulate network integration in Globus pallidus neurons: a modeling study. J Neurosci 30:15146–15159CrossRefGoogle Scholar
  10. Gunay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the Globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476–7491CrossRefGoogle Scholar
  11. Gurney K, Prescott TJ, Redgrave P (2001a) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. BiolCybern 84:411–423Google Scholar
  12. Gurney K, Prescott TJ, Redgrave P (2001b) A computational model of action selection in the basal ganglia. I. A new functional anatomy. BiolCybern 84:401–410Google Scholar
  13. Herz AVM, Gollisch T, Machens CK, Jaeger D (2006) Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314:80–85CrossRefGoogle Scholar
  14. Holgado AJN, Terry JR, Bogacz R (2010) Conditions for the generation of Beta oscillations in the subthalamic nucleus-Globus pallidus network. J Neurosci 30:12340–12352CrossRefGoogle Scholar
  15. Humphries MD, Stewart RD, Gurney KN (2006) A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J Neurosci 26:12921–12942CrossRefGoogle Scholar
  16. Johnson MD, McIntyre CC (2008) Quantifying the neural elements activated and inhibited by globus pallidus deep brain stimulation. J Neurophysiol 100:2549–2563CrossRefGoogle Scholar
  17. Kang G, Lowery MM (2013) Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the Cortico-basal ganglia network. IEEE Trans Neural Syst Rehab Eng 21:244–253CrossRefGoogle Scholar
  18. Kerr CC, Van Albada SJ, Neymotin SA, Chadderdon GL, Robinson PA, Lytton WW (2013) Cortical information flow in Parkinson’s disease: a composite network/field model. Front Comput Neurosci 7.  https://doi.org/10.3389/fncom.2013.00039
  19. Magill PJ, Bolam JP, Bevan MD (2001) Dopamine regulates the impact of the cerebral cortex on the subthalamic nucleus-globus pallidus network. Neuroscience 106:313–330CrossRefGoogle Scholar
  20. Mallet N, Micklem Benjamin R, Henny P, Brown Matthew T, Williams C, Bolam JP, Nakamura Kouichi C, Magill Peter J (2012) Dichotomous Organization of the External Globus Pallidus. Neuron 74:1075–1086CrossRefGoogle Scholar
  21. McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N (2011) Striatal origin of the pathologic beta oscillations in Parkinson's disease. Proc Natl Acad Sci 108:11620–11625CrossRefGoogle Scholar
  22. Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552–13566CrossRefGoogle Scholar
  23. Nevado-Holgado AJ, Mallet N, Magill PJ, Bogacz R (2013) Effective connectivity of the subthalamic nucleus – globus pallidus network during parkinsonian oscillations. J Physiol 592:1429–1455CrossRefGoogle Scholar
  24. Park C, Rubchinsky LL (2012) Potential mechanisms for imperfect synchronization in parkinsonian basal ganglia. PLoS One 7:e51530CrossRefGoogle Scholar
  25. Plenz D, Kitai ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400:677–682CrossRefGoogle Scholar
  26. Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16:211–235CrossRefGoogle Scholar
  27. Schultheiss NW, Edgerton JR, Jaeger D (2010) Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct Perisomatic and dendritic modes of synaptic integration. J Neurosci 30:2767–2782CrossRefGoogle Scholar
  28. So RQ, Kent AR, Grill WM (2012) Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. J Comput Neurosci 32:499–519CrossRefGoogle Scholar
  29. Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the Subthalamopallidal network of the basal ganglia. J Neurosci 22:2963–2976CrossRefGoogle Scholar
  30. Vitek JL, Zhang J, Hashimoto T, Russo GS, Baker KB (2012) External pallidal stimulation improves parkinsonian motor signs and modulates neuronal activity throughout the basal ganglia thalamic network. Exp Neurol 233:581–586CrossRefGoogle Scholar

Further Reading

  1. Kita H (2010) Chapter 13. Organization of the globus pallidus. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, vol 233–247. Elsevier Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyEmory UniversityAtlantaUSA

Section editors and affiliations

  • Jonathan E. Rubin
    • 1
  1. 1.Department of MathematicsUniversity of PittsburghPittsburghUSA