Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Network Theory in Neuroscience

  • David Papo
  • Javier M. Buldú
  • Stefano Boccaletti
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_713-1



Network theory is a branch of mathematics concerned with the analysis of the structure of graphs, the mathematical abstraction of networks. Since the beginning of the twenty-first century, it has become an applied discipline due to the availability of large datasets for social, technological, and biological systems. Although network theory was initially restricted to topological analysis, it has soon become a tool for understanding the emergence, functioning, and evolution of networks and the dynamical processes occurring on them. The application of network theory to neuroscience and, more specifically, to the analysis of brain structure and function represents a qualitatively different view of brain activity and brain-behavior mapping, shifting from a computerlike to a complex system vision of the brain, where networks are endowed with properties which stem in a nontrivial way from those of their...


Functional Connectivity Degree Distribution Network Theory Fractal Network Brain Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Achard S, Bullmore E (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol 3:17Google Scholar
  2. Achard S, Duke T, Bullmore E (2006a) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103:19518–19523PubMedCentralPubMedGoogle Scholar
  3. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006b) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72PubMedGoogle Scholar
  4. Albert R, Jeong H, Barabási AL (2000) Error and attack tolerance of complex networks. Nature 406:378–382PubMedGoogle Scholar
  5. Alexander-Bloch AF, Gogtay N, Meunier D, Birn R, Clasen L, Lalonde F, Lenroot R, Giedd J, Bullmore ET (2010) Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Front Syst Neurosci 4:147PubMedCentralPubMedGoogle Scholar
  6. Amaral LAN, Scala A, Barthélemy M, Stanley HE (2000) Classes of small-world networks. Proc Natl Acad Sci U S A 97:11149–11152PubMedCentralPubMedGoogle Scholar
  7. Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96:114102PubMedGoogle Scholar
  8. Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469:93–153Google Scholar
  9. Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–19523PubMedCentralPubMedGoogle Scholar
  10. Bassett DS, Bullmore ET, Verchinksi BA, Mattay VS, Weinberger DR et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–9248PubMedCentralPubMedGoogle Scholar
  11. Bassett DS, Greenfield DL, Meyer-Lindenberg A, Weinberger DR, Moore SW, Bullmore ET (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6:e1000748PubMedCentralPubMedGoogle Scholar
  12. Bassett DS, Wymbs N, Porter MA, Mucha P, Carlson JM, Grafton ST (2011) Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA 108:7641–7646PubMedCentralPubMedGoogle Scholar
  13. Bialonski S (2012) Inferring complex networks from time series of dynamical systems: pitfalls, misinterpretations, and possible solutions. arxiv:1208.0800Google Scholar
  14. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308Google Scholar
  15. Boersma M, Smit DJ, de Bie HM, Van Baal GC, Boomsma DI, de Geus EJ, Delemarre-van de Waal HA, Stam CJ (2011) Network analysis of resting state EEG in the developing young brain: structure comes with maturation. Hum Brain Mapp 32:413–425PubMedGoogle Scholar
  16. Breakspear M (2002) Nonlinear phase desynchronization in human electroencephalographic data. Hum Brain Mapp 15:175–198PubMedGoogle Scholar
  17. Büchel C, Friston KJ (2000) Assessing interactions among neuronal systems using functional neuroimaging. Neural Netw 13:871–882PubMedGoogle Scholar
  18. Bucolo M, Fazzino S, La Rosa M, Fortuna L (2003) Small-world networks of fuzzy chaotic oscillators. Chaos Solitons Fractals 17:557–565Google Scholar
  19. Buldú JM, Bajo R, Maestú F, Castellanos N, Leyva I, Gil P, Sendiña-Nadal I, Almendral JA, Nevado A, del Pozo F, Boccaletti S (2011) Reorganization of functional networks in mild cognitive impairment. PLoS One 6:e19584PubMedCentralPubMedGoogle Scholar
  20. Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–348PubMedGoogle Scholar
  21. Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex 18:2374–2381PubMedCentralPubMedGoogle Scholar
  22. Cohen R, Havlin S (2010) Complex networks: structure, robustness, and function. Cambridge University Press, CambridgeGoogle Scholar
  23. Colizza V, Flammini A, Serrano MA, Vespignani A (2006) Detecting richclub ordering in complex networks. Nat Phys 2:110–115Google Scholar
  24. De Vico Fallani F, Latora V, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, Colosimo A, Babiloni F (2008) Persistent patterns of interconnection in time-varying cortical networks estimated from high-resolution EEG recordings in humans during a simple motor act. J Phys A 41:224014Google Scholar
  25. Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S, Fotopoulos S (2010) Tracking brain dynamics via time-dependent network analysis. J Neurosci Methods 193:145–155PubMedGoogle Scholar
  26. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102PubMedGoogle Scholar
  27. Felleman DJ, van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedGoogle Scholar
  28. Fletcher P, McKenna J, Friston K, Frith C, Dolan R (1999) Abnormal cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuroimage 9:337–342PubMedGoogle Scholar
  29. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174Google Scholar
  30. Friston KJ (2000) The labile brain. I. Neuronal transients and nonlinear coupling. Philos Trans R Soc Lond B 355:215–236Google Scholar
  31. Gallos LK, Makse HA, Sigman M (2012) A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks. Proc Natl Acad Sci USA 109:2825–2830PubMedCentralPubMedGoogle Scholar
  32. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826PubMedCentralPubMedGoogle Scholar
  33. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536PubMedCentralPubMedGoogle Scholar
  34. Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900PubMedCentralPubMedGoogle Scholar
  35. Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2:e597PubMedCentralPubMedGoogle Scholar
  36. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159PubMedCentralPubMedGoogle Scholar
  37. Harriger L, van den Heuvel M, Sporns O (2012) Rich club organization of macaque cerebral cortex and its role in network communication. PLoS One 7:e46497PubMedCentralPubMedGoogle Scholar
  38. He Y, Chen ZJ, Evans AC (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 17:2407–2419PubMedGoogle Scholar
  39. Hilgetag CC, Burns GAPC, O’Neill MA, Scannell JW, Young MP (2000) Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B 355:91–110Google Scholar
  40. Humphries MD, Gurney K (2008) Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PLoS One 3:e0002051PubMedGoogle Scholar
  41. Hutchison RW, Womelsdorf T, Gati JS, Everling S, Menon RS (2012) Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum Brain Mapp 34:2154–2177PubMedGoogle Scholar
  42. Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L, Valdés-Hernández PA, Martínez-Montes E, Alemán-Gómez Y, Sánchez-Bornot JM (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36:645–660PubMedGoogle Scholar
  43. Jirsa VK, Kelso JAS (2000) Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Phys Rev E 62:8462–8465Google Scholar
  44. Just M, Cherkassky V, Keller TA, Minshew N (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain 127:1811–1821PubMedGoogle Scholar
  45. Kaiser M, Hilgetag CC (2004) Edge vulnerability in neural and metabolic networks. Biol Cybern 90:311–317PubMedGoogle Scholar
  46. Kaiser M, Hilgetag CC (2006) Nonoptimal component placement, but short processing paths, due to long- distance projections in neural systems. PLoS Comput Biol 2:e95PubMedCentralPubMedGoogle Scholar
  47. Kaiser M, Hilgetag CC (2010) Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Front Neuroinform 4:8PubMedCentralPubMedGoogle Scholar
  48. Kaiser M, Martin R, Andreas P, Young MP (2007) Simulation of robustness against lesions of cortical networks. Eur J Neurosci 25:3185–3192PubMedGoogle Scholar
  49. Kitzbichler MG, Henson RNA, Smith ML, Nathan PJ, Bullmore ET (2011) Cognitive effort drives workspace configuration of human brain functional networks. J Neurosci 31:8259–8270PubMedGoogle Scholar
  50. Lago-Fernandez LF, Huerta R, Corbacho F, Siguenza JA (2000) Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84:2758–2761PubMedGoogle Scholar
  51. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87:198701PubMedGoogle Scholar
  52. Laughlin SB, Sejnowski TJ (2003) Communication in neural networks. Science 301:1870–1874PubMedCentralPubMedGoogle Scholar
  53. Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, Liu Q, Zeng S, Luo Q (2010) Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330:1404–1408PubMedGoogle Scholar
  54. Liu YY, Slotine JJ, Barabási AL (2011) Controllability of complex networks. Nature 473:167–173PubMedGoogle Scholar
  55. Lynall ME, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore ET (2010) Functional connectivity and brain networks in schizophrenia. J Neurosci 30:9477–9487PubMedCentralPubMedGoogle Scholar
  56. Menzies L, Achard S, Chamberlain SR, Fineberg N, Chen CH, del Campo N, Sahakian BJ, Robbins TW, Bullmore E (2007) Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain 130:3223–3236PubMedGoogle Scholar
  57. Meunier D, Lambiotte R, Fornito A, Ersche K, Bullmore ET (2009a) Hierarchical modularity in human brain functional networks. Front Neuroinform 3:37PubMedCentralPubMedGoogle Scholar
  58. Meunier D, Achard S, Morcom A, Bullmore ET (2009b) Age-related changes in modular organization of human brain functional networks. Neuroimage 44:715–723PubMedGoogle Scholar
  59. Meunier D, Lambiotte R, Bullmore ET (2010) Modular and hierarchically modular organization of brain networks. Front Neurosci 4:200PubMedCentralPubMedGoogle Scholar
  60. Micheloyannis S, Pachou E, Stam CJ, Breakspear M, Bitsios P, Vourkas M, Erimaki S, Zervakis M (2006) Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr Res 87:60–66PubMedGoogle Scholar
  61. Milgram S (1967) The small-world problem. Psychol Today 1:61–67Google Scholar
  62. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827PubMedGoogle Scholar
  63. Miltner WHR, Braun C, Arnold M, Witte H, Taub E (1999) Coherence of gamma-band EEG activity as a basis of associative learning. Nature 397:434–436PubMedGoogle Scholar
  64. Netoff TI, Clewley R, Arno S, Keck T, White JA (2004) Epilepsy in small-world networks. J Neurosci 24:8075–8083PubMedGoogle Scholar
  65. Newman MEJ (2002) Assortative mixing in networks. Phys Rev Lett 89:208701PubMedGoogle Scholar
  66. Newman MEJ (2003) The structure and function of complex networks. SIAM Review 45:167–256Google Scholar
  67. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8696PubMedCentralPubMedGoogle Scholar
  68. Newman MEJ (2010) Networks: an introduction. Oxford University Press, New YorkGoogle Scholar
  69. Pan RK, Chatterjee N, Sinha S (2010) Mesoscopic organization reveals the constraints governing Caenorhabditis elegans nervous system. PLoS One 5:e9240PubMedCentralPubMedGoogle Scholar
  70. Ponten SC, Bartolomei F, Stam CJ (2007) Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 118:918–927PubMedGoogle Scholar
  71. Radicchi F, Ramasco JJ, Barrat A, Fortunato S (2008) Complex networks renormalization: flows and fixed points. Phys Rev Lett 101:148701PubMedGoogle Scholar
  72. Rodriguez E, George N, Lachaux J-P, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long distance synchronization of human brain activity. Nature 397:430–433PubMedGoogle Scholar
  73. Rozenfeld HD, Song C, Makse HA (2010) The small world-fractal transition in complex networks: a renormalization group approach. Phys Rev Lett 104:025701PubMedGoogle Scholar
  74. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069PubMedGoogle Scholar
  75. Sales-Pardo M, Guimerà R, Moreira AA, Amaral LAN (2007) Extracting the hierarchical organization of complex systems. Proc Natl Acad Sci USA 104:15224–15229PubMedCentralPubMedGoogle Scholar
  76. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332–1342PubMedGoogle Scholar
  77. Sarpeshkar R (1997) Efficient precise computation with noisy components: extrapolating from an electronic cochlea to the brain. Unpublished doctoral dissertation, California Institute of TechnologyGoogle Scholar
  78. Scannell JW, Burns GAPC, Hilgetag CC, O’Neil MA, Young MP (1999) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9:277–299PubMedGoogle Scholar
  79. Schindler KA, Bialonski S, Horstmann MT, Elger CE, Lehnertz K (2008) Evolving functional network properties and synchronizability during human epileptic seizures. Chaos 18:033119PubMedGoogle Scholar
  80. Shanahan M (2012) The brain’s connective core and its role in animal cognition. Philos Trans R Soc B 367:2704–2714Google Scholar
  81. Shefi O, Golding I, Segev R, Ben-Jacob E, Ayali A (2002) Morphological characterization of in vitro neuronal networks. Phys Rev E 66:021905Google Scholar
  82. Singer W (1995) Putative functions of temporal correlations in neocortical processing. In: Koch C, Davis J (eds) Large-scale neuronal theories of the brain. MIT Press, Cambridge, pp 202–237Google Scholar
  83. Song C, Havlin S, Makse HA (2005) Self-similarity of complex networks. Nature 433:392–395PubMedGoogle Scholar
  84. Song C, Havlin S, Makse HA (2006) Origins of fractality in the growth of complex networks. Nat Phys 2:275–281Google Scholar
  85. Sporns O, Kötter R (2004) Motifs in brain networks. PLoS Biol 2:1910–1918Google Scholar
  86. Sporns O, Tononi G, Edelman GM (2000) Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 13:909–922PubMedGoogle Scholar
  87. Sporns O, Tononi G, Edelman GM (2002) Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135:69–74PubMedGoogle Scholar
  88. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization, development and function of complex brain networks. Trends Cogn Sci 8:418–425PubMedGoogle Scholar
  89. Sporns O, Honey CJ, Kötter R (2007) Identification and classification of hubs in brain networks. PLoS One 2:e1049PubMedCentralPubMedGoogle Scholar
  90. Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiol 123:1067–1087PubMedGoogle Scholar
  91. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99PubMedGoogle Scholar
  92. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, van Cappellen van Walsum AM, Montez T, Verbunt JP, de Munck JC, van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132:213–224PubMedGoogle Scholar
  93. Stephan KE, Friston KJ (2007) Models of effective connectivity in neural systems. In: Jirsa VK, McIntosh AR (eds) Handbook of brain connectivity. Springer, Berlin, pp 303–325Google Scholar
  94. Strogatz SH (2001) Exploring complex networks. Nature 410:268–271PubMedGoogle Scholar
  95. Tononi G, Sporns O, Edelman GM (1994) A measure, of brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci USA 91:5033–5037PubMedCentralPubMedGoogle Scholar
  96. Tononi G, Edelman GM, Sporns O (1998) Complexity and coherency: integrating information in the brain. Trends Cogn Sci 2:474–484PubMedGoogle Scholar
  97. Valencia M, Martinerie J, Dupont S, Chavez M (2008) Dynamic small-world behavior in functional brain networks unveiled by an event-related networks approach. Phys Rev E 77:050905(R)Google Scholar
  98. Van den Heuvel MP, Starn CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of voxel based resting-state functional connectivity in the human brain. Neuroimage 43:528–539PubMedGoogle Scholar
  99. Van den Heuvel MP, Kahn R, Goni J, Sporns O (2012) A high-cost, high efficiency backbone for global brain communication. Proc Natl Acad Sci USA 109:11372–11377PubMedCentralPubMedGoogle Scholar
  100. van Putten MJAM, Stam CJ (2001) Application of a neural complexity measure to multichannel EEG. Phys Lett A 281:131–141Google Scholar
  101. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB (2011) Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput Biol 7:e1001066PubMedCentralPubMedGoogle Scholar
  102. Vértes PE, Alexander-Bloch AF, Gogtay N, Giedd JN, Rapoport JL, Bullmore ET (2012) Simple models of human brain functional networks. Proc Natl Acad Sci USA 109:5868–5873PubMedCentralPubMedGoogle Scholar
  103. Watts D, Strogatz S (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442PubMedGoogle Scholar
  104. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B 314:1–340Google Scholar
  105. Yu S, Huang D, Singer W, Nikolic D (2008) A small world of neuronal synchrony. Cereb Cortex 18:2891–2901PubMedCentralPubMedGoogle Scholar
  106. Zamora-Lopez G, Zhou C, Kurths J (2010) Cortical hubs form a module for multisensory integration on top of the hierarchy of cortical networks. Front Neuroinform 4:1PubMedCentralPubMedGoogle Scholar
  107. Zanin M, Sousa P, Papo D, Bajo R, García-Prieto J, del Pozo F, Menasalvas E, Boccaletti S (2012) Optimizing functional network representation of multivariate time series. Sci Rep 2:630PubMedCentralPubMedGoogle Scholar
  108. Zhou C, Zemanová L, Zamora G, Hilgetag CC, Kurths J (2006) Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 97:238103PubMedGoogle Scholar

Further Reading

  1. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512PubMedGoogle Scholar
  2. Bonifazi P, Goldin M, Picardo MA, Jorquera I, Cattani A, Bianconi G, Represa A, Ben-Ari Y, Cossart R (2009) GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science 326:1419–1424PubMedGoogle Scholar
  3. Braitenberg V, Schüz A (1998) A statistics and geometry of neuronal connectivity. Springer, BerlinGoogle Scholar
  4. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198PubMedGoogle Scholar
  5. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ (2007) The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol 118:2317–2331PubMedGoogle Scholar
  6. Sporns O, Zwi JD (2004) The small world of the cerebral cortex. Neuroinformatics 2:145–162PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David Papo
    • 1
  • Javier M. Buldú
    • 2
  • Stefano Boccaletti
    • 3
  1. 1.Center of Biomedical TechnologyMadridSpain
  2. 2.Universidad Rey Juan CarlosMóstolesSpain
  3. 3.CNR-Institute of Complex SystemsSesto Fiorentino, FlorenceItaly