Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Computational Models of Mammalian Respiratory CPG

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_41-1


Rhythmic breathing movements in mammals are produced by a central pattern generator (CPG), consisting of specialized neuronal networks located in the brainstem that are capable of endogenously producing patterned rhythmic activity. This activity emerges from the intrinsic biophysical properties and synaptic interconnections of spatially distributed neuron populations within the pontine–medullary circuits comprising the CPG. These circuits are embedded in a larger respiratory neural control system engaging various central nervous system (CNS) and peripheral afferent inputs that regulate the neural activity patterns including the oscillation period and amplitude of the output rhythmic motor activity to adjust it to the internal and/or external environment for sensorimotor integration and physiological homeostasis of O2 and CO2in the body. Computational models of the brainstem respiratory CPG that incorporate various levels of biological and mathematical detail have been in...


Central Pattern Generator Inspiratory Phase Excitatory Drive Inspiratory Neuron Central Pattern Generator Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access


  1. Abdala APL, Rybak IA, Smith JC, Paton JFR (2009) Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins, and implications for respiratory rhythm generation. J Physiol 587:3539–3559PubMedCrossRefPubMedCentralGoogle Scholar
  2. Butera RJ, Rinzel J, Smith JC (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397PubMedGoogle Scholar
  3. Butera RJ, Rinzel J, Smith JC (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415PubMedGoogle Scholar
  4. Butera RJ, Rubin J, Terman D, Smith JC (2005) Oscillatory bursting mechanisms in respiratory pacemaker neurons and networks. In: Coombes S, Bressloff PC (eds) Bursting. The genesis of rhythm in the nervous system. World Scientific Press, London, pp 303–347CrossRefGoogle Scholar
  5. Ermentrout GB, Terman D (2010) Mathematical foundations of neuroscience. Springer, New YorkCrossRefGoogle Scholar
  6. Grillner S, Jessell TM (2009) Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol 19:572–586PubMedCrossRefPubMedCentralGoogle Scholar
  7. Jasinski PE, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2013) Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modeling study. Eur J Neurosci 37:212–230PubMedCrossRefPubMedCentralGoogle Scholar
  8. Lindsey B, Rybak IA, Smith JC (2012) Computational models and emergent properties of respiratory neural networks. Compr Physiol 2:1619–1670PubMedPubMedCentralGoogle Scholar
  9. Purvis L, Smith JC, Koizumi H, Butera RJ (2007) Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. J Neurophysiol 97:1515–1526PubMedCrossRefGoogle Scholar
  10. Richter DW, Smith JC (2014) Respiratory rhythm generation in vivo. Physiology 29:558–571CrossRefGoogle Scholar
  11. Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA (2009) Multiple rhythmic states in a model of the respiratory CPG. J Neurophysiol 101:2146–2165PubMedCrossRefPubMedCentralGoogle Scholar
  12. Rubin J, Bacaak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2011) Interacting oscillations in neural control of breathing: modeling and qualitative analysis. J Comput Neurosci 30:607–632PubMedCrossRefPubMedCentralGoogle Scholar
  13. Rybak IA, Smith JC (2009) Computational modeling of the respiratory network. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience, part 3. Springer, Berlin, pp 824–832CrossRefGoogle Scholar
  14. Rybak IA, Abdula APL, Markin SN, Paton JFR, Smith JC (2007) Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog Brain Res 165:201–220PubMedCrossRefPubMedCentralGoogle Scholar
  15. Shepard GM, Grillner S (2010) Handbook of brain microcircuits. Oxford University Press, New YorkGoogle Scholar
  16. Shevtsova NA et al (2011) Computational modelling of 5-HT receptor-mediated reorganization of the brainstem respiratory network. Eur J Neurosci 34:1276–1279PubMedCrossRefPubMedCentralGoogle Scholar
  17. Smith JC, Abdala APL, Koizumi H, Rybak IA, Paton JFR (2007) Spatial and functional architecture of the mammalian brainstem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol 98:3370–3387PubMedCrossRefPubMedCentralGoogle Scholar
  18. Smith JC, Abdala APL, Rybak IA, Paton JFR (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 364:2577–2587PubMedCrossRefPubMedCentralGoogle Scholar
  19. Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162PubMedCrossRefPubMedCentralGoogle Scholar
  20. Stein PSG, Grillner S, Selverston AI, Stuart DG (1997) Neurons, networks, and motor behavior. MIT Press, Cambridge, MAGoogle Scholar

Copyright information

© Springer Science Business Media New York (outside the USA) 2014

Authors and Affiliations

  1. 1.Cellular and Systems Neurobiology SectionNINDS/NIHBethesdaUSA