Skip to main content

Hierarchical Models of the Visual System

  • Living reference work entry
  • Latest version View entry history
  • First Online:

Synonyms

Deep learning architectures; Hubel and Wiesel model; Large-scale models of the visual system; Simple-to-complex hierarchies; Ventral stream

Definition

Hierarchical models of the visual system are neural networks with a layered topology. The receptive fields of units (i.e., the region of visual space to which units respond) at one level of the hierarchy are constructed by combining inputs from units at a lower level. After a few processing stages, small receptive fields tuned to simple stimuli get combined to form larger receptive fields tuned to more complex stimuli. Such an anatomical and functional hierarchical architecture is a hallmark of the organization of the visual system. In feedforward networks, information flows in a bottom-up fashion – from lower to higher processing stages. In feedback networks, information is able to dynamically reenter processing stages via recurrent connections. Feedback connections can be broadly divided between horizontal or lateral...

This is a preview of subscription content, log in via an institution.

References

  • Amit Y, Mascaro M (2003) An integrated network for invariant visual detection and recognition. Vis Res 43(19):2073–2088

    Article  PubMed  Google Scholar 

  • Angelucci A, Shushruth S (2013) Beyond the Classical Receptive Field: Surround Modulation in Primary Visual Cortex . In J. S. Werner L. M. Chalupa (Eds.), The New Visual Neurosciences (pp. 425–444). Cambridge: MIT Press.

    Google Scholar 

  • Bengio Y, Lee D-H, Bornschein J, Lin Z (2015) Towards biologically plausible deep learning. Learning. arXiv:1502.04156 [cs.LG]

    Google Scholar 

  • Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147

    Article  PubMed  Google Scholar 

  • Cadena SA, Denfield GH, Walker EY, Gatys LA, Tolias AS, Bethge M, Ecker AS (2019) Deep convolutional models improve predictions of macaque V1 responses to natural images. PLoS Comput Biol 15(4):e1006897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadieu CF, Hong H, Yamins DLK, Pinto N, Ardila D, Solomon EA, Majaj NJ, DiCarlo JJ (2014) Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput Biol 10(12):e1003963

    Article  PubMed  PubMed Central  Google Scholar 

  • Carandini M, Heeger DJ (1994) Summation and division by neurons in primate visual cortex. Science 264:1333–1336

    Article  CAS  PubMed  Google Scholar 

  • Carandini M, Heeger DJ (2012) Normalization as a canonical neural computation. Nature Reviews Neuroscience 13(1):51–62. https://doi.org/10.1038/nrn3136

  • Chen X, Han F, Poo M-m, Dan Y (2007) Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1). Proc Natl Acad Sci 104(48):19120–19125

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho K, Bahdanau D, Bougares F, Schwenk H, Bengio Y (2014) Learning phrase representations using RNN encoder decoder for statistical machine translation

    Google Scholar 

  • Cichy RM, Khosla A, Pantazis D, Torralba A (2016) Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Sci Rep 6:27755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichy RM, Khosla A, Pantazis D, Oliva A (2017) Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage 153:346–358

    Article  Google Scholar 

  • Clevenger PE, Hummel JE (2014) Working memory for relations among objects. Atten Percept Psychophys 76:1933–1953

    Article  PubMed  Google Scholar 

  • Devereux BJ, Clarke A, Tyler LK (2018) Integrated deep visual and semantic attractor neural networks predict fMRI pattern-information along the ventral object processing pathway. Sci Rep 8:10636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiCarlo JJ, Zoccolan D, Rust NC (2012) How does the brain solve visual object recognition? Neuron 73(3):415–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donderi DONC, Zelnicker D (1969) Parallel processing in visual same-different. Percept Psychophys 5(4):197–200

    Article  Google Scholar 

  • Eberhardt S, Cader J, Serre T (2016) How deep is the feature analysis underlying rapid visual categorization ? In: Lee D, Sugiyama M, Luxburg UV, Guyon I, Garnett R (eds) Neural information processing systems. Curran Associates, Red Hook, pp 1100–1108

    Google Scholar 

  • Eickenberg M, Gramfort A, Varoquaux G, Thirion B (2017) Seeing it all: convolutional network layers map the function of the human visual system. NeuroImage 152:184–194

    Article  PubMed  Google Scholar 

  • Evans KK, Treisman A (2005) Perception of objects in natural scenes: is it really attention free? J Exp Psychol Hum Percept Perform 31(6):1476–1492

    Article  PubMed  Google Scholar 

  • Field DJ, Hayes A, Hess RF (1993) Contour integration by the human visual system: evidence for a local “association field”. Vis Res 33(2):173–193

    Article  CAS  PubMed  Google Scholar 

  • Fodor JA, Pylyshyn ZW (1988) Connectionism and cognitive architecture: a critical analysis. Cognition 28(1–2):3–71

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36:193–202

    Article  CAS  PubMed  Google Scholar 

  • Gazzaley A, Nobre AC (2012) Top-down modulation: bridging selective attention and working memory. Trends Cogn Sci 16(2):129–135

    Article  PubMed  Google Scholar 

  • Geirhos R, Temme CRM, Rauber J, Schütt HH, Bethge M, Wichmann FA (2018) Generalisation in humans and deep neural networks. In: NeurIPS. Curran Associates, Red Hook

    Google Scholar 

  • Geman S (2006) Invariance and selectivity in the ventral visual pathway. J Physiol Paris 100(4):212–224

    Article  PubMed  Google Scholar 

  • Geman D, Geman S, Hallonquist N, Younes L (2015) Visual Turing test for computer vision systems. Proc Natl Acad Sci 112(12):3618–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giese MA, Poggio T (2003) Neural mechanisms for the recognition of biological movements. Nat Rev Neurosci 4(3):179–192

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat Rev Neurosci 14(5):350–363

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD, Sigman M (2007) Brain states: top-down influences in sensory processing. Neuron 54(5):677–696

    Article  CAS  PubMed  Google Scholar 

  • Greene MR, Hansen BC (2018) Shared spatiotemporal category representations in biological and artificial deep neural networks. PLoS Comput Biol 14(7)

    Google Scholar 

  • Grossberg S, Mingolla E (1985) Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. Psychol Rev 92(2):173–211

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S, Mingolla E (1987) Neural dynamics of surface perception: boundary webs, illuminants, and shape-from-shading. Comput Vis Graphics Image Process 37(1):116–165

    Article  Google Scholar 

  • Grossberg S, Raizada RD (2000) Contrast-sensitive perceptual grouping and object-based attention in the laminar circuits of primary visual cortex. Vis Res 40(10–12):1413–1432

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S, Williamson JR (2001) A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning. Cereb Cortex 11(1):37–58

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S, Mingolla E, Pack C (1999) A neural model of motion processing and visual navigation by cortical area MST. Cereb Cortex 9(8):878–895

    Article  CAS  PubMed  Google Scholar 

  • Güçlü U, Gerven MAJV (2017) Increasingly complex representations of natural movies across the dorsal stream are shared between subjects. NeuroImage 145:329–336

    Article  PubMed  Google Scholar 

  • Guclu U, van Gerven MAJ (2015) Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J Neurosci 35(27):10005–10014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Computer Vision and Pattern Recognition; Artificial Intelligence; Learning, Santiago, Chile, IEEE, pp 2026–1034. Retrieved from http://arxiv.org/abs/1502.01852

  • He K, Zhang X, Ren S, Sun J (2016) Identity mappings in deep residual networks. CoRR, abs/1603.05027

    Google Scholar 

  • Heeger DJ (1993) Modeling simple-cell direction selectivity with normalized, half-squared, linear operators. J Neurophysiol 70(5):1885–1898

    Article  CAS  PubMed  Google Scholar 

  • Hochreiter S, Hochreiter S, Schmidhuber J, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  CAS  PubMed  Google Scholar 

  • Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36(5):791–804

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Yamins DLK, Majaj NJ, DiCarlo JJ (2016) Explicit information for category-orthogonal object properties increases along the ventral stream. Nat Neurosci 19(4):613–622

    Article  CAS  PubMed  Google Scholar 

  • Hubel D, Wiesel T (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyötyniemi H (1996) Turing Machines are Recurrent Neural Networks. In Alander J, Honkela T, Jakobsson M (eds), STeP’96 Genes, Nets and Symbols. Vaasa: The Finnish Artificial Intelligence Society, pp 13–24. Retrieved from http://lipas.uwasa.fi/stes/step96/step96/hyotyniemi1/

  • Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML’15: Proceedings of the 32nd International Conference on Machine Learning (pp. 448–456). Lille, France, Proceedings of Machine Learning Research

    Google Scholar 

  • Jhuang, H., Serre, T., Wolf, L., Poggio, T. (2007). A biologically inspired system for action recognition. In Proceedings of the Eleventh IEEE International Conference on Computer Vision (pp. 1–8). Rio de Janiero, Brazil, IEEE. Retrieved from http://www.cnbc.cmu.edu/cns/papers/Jhuang_etal_iccv07.pdf https://arxiv.org/pdf/1811.09716.pdf

  • Kalfas I, Kumar S, Vogels R (2017) Shape selectivity of middle superior temporal sulcus body patch neurons. eNeuro 4(3):0113–0117

    Article  Google Scholar 

  • Kar K, Kubilius J, Schmidt K, Issa EB, DiCarlo JJ (2019) Evidence that recurrent circuits are critical to the ventral stream’s execution of core object recognition behavior. Nature Neuroscience 22(6):974–983. https://doi.org/10.1038/s41593-019-0392-5

  • Khaligh-Razavi S-M, Kriegeskorte N (2014) Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput Biol 10(11):e1003915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Ricci M, Serre T, Serre T (2018) Not-So-CLEVR: learning same different relations strains feedforward neural networks. Interface Focus 8:2018011

    Article  Google Scholar 

  • Kouh M, Poggio T (2008) A canonical neural circuit for cortical nonlinear operations. Neural Comput 20(6):1427–1451

    Article  PubMed  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. In: Neural information processing system, Lake Tahoe

    Google Scholar 

  • Lamme VAF, Supèr H, Spekreijse H (1998) Feedforward, horizontal, and feedback processing in the visual cortex. Curr Opin Neurobiol 8(4):529–535

    Article  CAS  PubMed  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Ng AY (2008) Sparse deep belief net model for visual area V2. In: Advances in Neural Information Processing Systems 20. Vancouver, Curran Associates, pp 873–880. https://doi.org/10.1.1.120.9887

    Google Scholar 

  • Liao Q, Poggio T (2016) Bridging the gaps between residual learning, recurrent neural networks and visual cortex. Technical report, Massachusetts Institute of Technology

    Google Scholar 

  • Liao Q, Leibo JZ, Poggio T (2015) How important is weight symmetry in backpropagation? Technical report 36

    Google Scholar 

  • Linsley D, Kim J, Veerabadran V, Windolf C, Serre T (2018) Learning long-range spatial dependencies with horizontal gated recurrent units. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Neural information processing systems. Red Hook, Curran Associates, pp 152–164

    Google Scholar 

  • Mallat S (2016) Understanding deep convolutional networks. Phil Trans R Soc A 374(20150203):1–17

    Google Scholar 

  • Marblestone AH, Wayne G, Kording KP (2016) Toward an integration of deep learning and neuroscience. Front Comput Neurosci 10:1–41

    Article  Google Scholar 

  • Marko H, Giebel H (1970) Recognition of handwritten characters with a system of homogeneous layers. Nachr Z 23:455–459

    Google Scholar 

  • Martinho A III, Kacelnik A (2016) Ducklings imprint on the relational concept of same or different. Science 353(6296):286–288

    Article  CAS  PubMed  Google Scholar 

  • Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol 3(2):e31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mel BW (1997) SEEMORE: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput 9:777–804

    Article  CAS  PubMed  Google Scholar 

  • Mineault P, Khawaja F, Butts D, Pack C (2012) Hierarchical processing of complex motion along the primate dorsal visual pathway. Proc Natl Acad Sci 109(16):E972–E980

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Gattass R, Desimone R, Ungerleider LG (1993) The modular organization of projections areas V4 and TEO in macaques from areas VI and V2 to. The Journal of Neuroscience 13(9):3681–3691

    Google Scholar 

  • Nayebi A, Bear D, Kubilius J, Kar K, Ganguli S, Sussillo D, DiCarlo JJ, Yamins DLK (2018) Task-driven convolutional recurrent models of the visual system. In: Bengio S, Wallach H, Larochelle H, Grauman K, Cesa-Bianchi N, Garnett R (eds) Neural information processing systems. Curran Associates, Red Hook

    Google Scholar 

  • O’Reilly RC, Wyatte D, Herd S, Mingus B, Jilk DJ (2013) Recurrent processing during object recognition. Front Psychol 4:1–14

    Article  Google Scholar 

  • Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583):607–609

    Article  CAS  PubMed  Google Scholar 

  • Ostojic S, Brunel N (2011) From spiking neuron models to linear-nonlinear models. PLoS Comput Biol 7(1):e1001056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pack CC, Born RT (2008) Cortical mechanisms for the integration of visual motion. Elsevier, Oxford

    Book  Google Scholar 

  • Pennartz CMA, Dora S, Muckli L, Lorteije JAM (2019) Towards a unified view on pathways and functions of neural recurrent processing. Trends Neurosci 42:1–15

    Article  CAS  Google Scholar 

  • Perrett D, Oram M (1993) Neurophysiology of shape processing. Image Vis Comput 11(6):317–333

    Article  Google Scholar 

  • Perrone JA, Thiele A (2002) A model of speed tuning in MT neurons. Vis Res 42(8):1035–1051

    Article  PubMed  Google Scholar 

  • Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Redmon J, Divvala S, Girshick R, Farhadi A (2016) You Only Look Once: Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, IEEE. https://doi.org/10.1016/j.nima.2015.05.028

  • Reid VM, Dunn K, Young RJ, Amu J, Donovan T, Reissland N (2017) The human fetus preferentially engages with face-like visual stimuli. Curr Biol 27(12):1825–1828.e3

    Article  CAS  PubMed  Google Scholar 

  • Rieke F, Warland D, de Ruyter van Steveninck R, Bialek W (1997) Spikes: exploring the neural code. MIT Press, Cambridge, MA

    Google Scholar 

  • Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Ringach DL (2004) Mapping receptive fields in primary visual cortex. J Physiol 558(3):717–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld, A., Zemel, R., Tsotsos, J. K. (2018). The Elephant in the Room. arXiv:1808.03305v1 [cs.CV]

    Google Scholar 

  • Rust NC, Schwartz O, Movshon JA, Simoncelli EP (2005) Spatiotemporal elements of macaque v1 receptive fields. Neuron 46(6):945–956

    Article  CAS  PubMed  Google Scholar 

  • Rust NC, Mante V, Simoncelli EP, Movshon JA (2006) How MT cells analyze the motion of visual patterns. Nat Neurosci 9(11):1421–1431

    Article  CAS  PubMed  Google Scholar 

  • Series P, Lorenceau J, Frégnac Y (2003) The silent surround of V1 receptive fields: theory and experiments. J Physiol 97:453–474

    Google Scholar 

  • Serre T (2016) Models of visual categorization. Wiley Interdiscip Rev Cogn Sci 7:197–213

    Article  PubMed  Google Scholar 

  • Serre T (2019) Deep learning: the good, the bad, and the ugly. Annu Rev Vis Sci 5(1):399

    Article  PubMed  Google Scholar 

  • Serre T, Poggio T (2010) A neuromorphic approach to computer vision. Commun ACM 53(10):54

    Article  Google Scholar 

  • Serre T, Kreiman G, Kouh M, Cadieu C, Knoblich U, Poggio T (2007) A quantitative theory of immediate visual recognition. Prog Brain Res 165:33

    Article  PubMed  Google Scholar 

  • Simoncelli EP, Heeger DJ (1998) A model of neuronal responses in visual area MT. Vis Res 38(5):743–761

    Article  CAS  PubMed  Google Scholar 

  • Simoncelli, E. P., Paninski, L., Pillow, J., Swartz, O. (2004). Characterization of Neural Responses with Stochastic Stimuli. In M. Gazzaniga (Ed.), The Cognitive Neurosciences (3rd ed., pp. 327–338). Cambridge: MIT Press

    Google Scholar 

  • Simonyan K, Zisserman A (2014) Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems Vol 1. Montreal, Canada, Curran Associates, pp 568–576

    Google Scholar 

  • Sjöström J, Gerstner W (2010) Spike-timing dependent plasticity. Scholarpedia 5(2):1362. Revision #184913

    Article  Google Scholar 

  • Szegedy C, Zaremba W, Sutskever I (2013) Intriguing properties of neural networks. arXiv Preprint arXiv …, pp 1–10

    Google Scholar 

  • Thorpe S (2002) Ultra-Rapid Scene Categorization with a Wave of Spikes. In: Bülthoff H.H., Wallraven C., Lee SW., Poggio T.A. (eds) Biologically Motivated Computer Vision. BMCV 2002. Lecture Notes in Computer Science, vol 2525. Springer, Berlin, Heidelberg

    Google Scholar 

  • Thorpe SJ, Gegenfurtner KR, Fabre-Thorpe M, Bülthoff HH (2001) Detection of animals in natural images using far peripheral vision. European Journal of Neuroscience 14(5):869–876. https://doi.org/10.1046/j.0953-816X.2001.01717.x

  • Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 3D convolutional networks. In: ICCV ’15 Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, IEEE, pp 4489–4497

    Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 136:97–136

    Article  Google Scholar 

  • Ullman, S., Soloviev, S. (1999). Computation of pattern invariance in brain-like structures. Neural Networks, 12, 1021–1036.

    Google Scholar 

  • Ullman S, Vidal-Naquet M, Sali E (2002) Visual features of intermediate complexity and their use in classification. Nat Neurosci 5(7):682–687

    Article  CAS  PubMed  Google Scholar 

  • van den Hurk J, Van Baelen M, Op de Beeck HP (2017) Development of visual category selectivity in ventral visual cortex does not require visual experience. Proc Natl Acad Sci 114(22):E4501–E4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallis G (1997) Invariant face and object recognition in the visual system. Prog Neurobiol 51(2):167–194

    Article  CAS  PubMed  Google Scholar 

  • Wersing H, Koerner E (2003) Learning optimized features for hierarchical models of invariant recognition. Neural Comput 15(7):1559–1588

    Article  PubMed  Google Scholar 

  • Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ (2014) Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc Natl Acad Sci 111(23):8619–8624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Computer vision: ECCV 2014. Springer, Berlin, pp 818–833

    Chapter  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Ricci .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ricci, M., Serre, T. (2020). Hierarchical Models of the Visual System. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_345-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hierarchical Models of the Visual System
    Published:
    12 March 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-2

  2. Original

    Hierarchical Models of the Visual System
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_345-1