Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Hippocampal Theta, Gamma, and Theta/Gamma Network Models

  • Katie A. Ferguson
  • Frances K. Skinner
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_27-2

Definition

Hippocampal theta, gamma, and theta/gamma network models refer to mathematical models of networks that are able to generate oscillations within the theta (4–12 Hz), gamma (25–140 Hz), and nested theta/gamma frequency ranges in the hippocampus.

The focus is on network models consisting of biophysically motivated cell models in the hippocampus that are concerned with network rhythm generation.

This entry discusses some common motives involved as well as questions that arise in constructing these network models, provides a tabular summary of existing theta/gamma network models, and gives further details of some of the network models.

Detailed Description

Coordinated neural activity may provide a temporal structure with which information can be processed and transmitted and can be reflected in recordings of population activity, such as those of the local field potential (LFP). Indeed, links between network oscillations and behavior have been shown, particularly with respect to...
This is a preview of subscription content, log in to check access.

References

  1. Andersen P, Bliss TV, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13:222–238PubMedGoogle Scholar
  2. Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687–2698CrossRefGoogle Scholar
  3. Bartos M, Vida I, Frotscher M, Meyer A, Monyer H, Geiger JRP, Jonas P (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99:13222–13227CrossRefGoogle Scholar
  4. Baude A, Bleasdale C, Dalezios Y, Somogyi P, Klausberger T (2007) Immunoreactivity for the GABAA receptor alpha1 subunit, somatostatin and Connexin36 distinguishes axoaxonic, basket, and bistratified interneurons of the rat hippocampus. Cereb Cortex 17:2094–2107CrossRefGoogle Scholar
  5. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. J Neurosci 32:423–435CrossRefGoogle Scholar
  6. Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23:751–785CrossRefGoogle Scholar
  7. Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. eLife 5:e18566CrossRefGoogle Scholar
  8. Bragin A, Jandó G, Nádasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60CrossRefGoogle Scholar
  9. Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340CrossRefGoogle Scholar
  10. Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225CrossRefGoogle Scholar
  11. Chatzikalymniou AP, Skinner FK (2018) Deciphering the contribution of oriens-lacunosum/moleculare (OLM) cells to intrinsic theta rhythms using biophysical local field potential (LFP) models. eNeuro. 5(4). pii: ENEURO.0146-18.2018.  https://doi.org/10.1523/ENEURO.0146-18.2018. eCollection 2018 Jul-Aug.CrossRefGoogle Scholar
  12. Colgin LL (2013) Mechanisms and functions of theta rhythms. Annu Rev Neurosci 36:295–312CrossRefGoogle Scholar
  13. Colgin LL, Moser EI (2010) Gamma oscillations in the hippocampus. Physiology (Bethesda) 25:319–329Google Scholar
  14. Cutsuridis V, Hasselmo M (2012) GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus 22:1597–1621CrossRefGoogle Scholar
  15. Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20:423–446PubMedGoogle Scholar
  16. Ermentrout GB, Kopell N (1998) Fine structure of neural spiking and synchronization in the presence of conduction delays. Proc Natl Acad Sci U S A 95:1259–1264CrossRefGoogle Scholar
  17. Feldt S, Bonifazi P, Cossart R (2011) Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci 34:225–236CrossRefGoogle Scholar
  18. Ferguson K, Huh CYL, Amilhon B, Williams S, Skinner FK (2013) Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Front Comput Neurosci 7:144CrossRefGoogle Scholar
  19. Ferguson KA, Huh CY, Amilhon B, Manseau F, Williams S, Skinner FK (2015a) Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Front Syst Neurosci 9:110.  https://doi.org/10.3389/fnsys.2015.00110. eCollection 2015CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ferguson KA, Huh CYL, Amilhon B, Williams S, Skinner FK (2015b) Simple, biologically-constrained CA1 pyramidal cell models using an intact, whole hippocampus context. F1000Research [Internet]. 2015 Jun 3 [cited 2016 Jul 25]. Available from: http://f1000research.com/articles/3-104/v2
  21. Ferguson KA, Chatzikalymniou AP, Skinner FK (2017) Combining theory, model, and experiment to explain how intrinsic theta rhythms are generated in an in vitro whole hippocampus preparation without oscillatory inputs. eNeuro 4(4). pii: ENEURO.0131-17.2017.  https://doi.org/10.1523/ENEURO.0131-17.2017. eCollection 2017 Jul-AugCrossRefGoogle Scholar
  22. Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189CrossRefGoogle Scholar
  23. Freund TF (2003) Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci 26:489–495CrossRefGoogle Scholar
  24. Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470CrossRefGoogle Scholar
  25. Gillies MJ, Traub RD, LeBeau FEN, Davies CH, Gloveli T, Buhl EH, Whittington MA (2002) A model of atropine-resistant theta oscillations in rat hippocampal area CA1. J Physiol (Lond) 543:779–793CrossRefGoogle Scholar
  26. Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Whittington MA, Kopell NJ (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A 102:13295–13300CrossRefGoogle Scholar
  27. Goutagny R, Jackson J, Williams S (2009) Self-generated theta oscillations in the hippocampus. Nat Neurosci 12:1491–1493CrossRefGoogle Scholar
  28. Gulyás AI, Szabó GG, Ulbert I, Holderith N, Monyer H, Erdélyi F, Szabó G, Freund TF, Hájos N (2010) Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J Neurosci 30:15134–15145CrossRefGoogle Scholar
  29. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14:1569–1572CrossRefGoogle Scholar
  30. Jackson J, Goutagny R, Williams S (2011) Fast and slow γ rhythms are intrinsically and independently generated in the subiculum. J Neurosci 31:12104–12117CrossRefGoogle Scholar
  31. Jinno S, Kosaka T (2006) Cellular architecture of the mouse hippocampus: a quantitative aspect of chemically defined GABAergic neurons with stereology. Neurosci Res 56:229–245CrossRefGoogle Scholar
  32. Katona I, Acsády L, Freund TF (1999) Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 88:37–55CrossRefGoogle Scholar
  33. Kispersky TJ, Fernandez FR, Economo MN, White JA (2012) Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics. J Neurosci 32:3637–3651CrossRefGoogle Scholar
  34. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57CrossRefGoogle Scholar
  35. Kunec S, Hasselmo ME, Kopell N (2005) Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J Neurophysiol 94:70–82CrossRefGoogle Scholar
  36. Maccaferri G, McBain CJ (1996) The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurons. J Physiol (Lond) 497(Pt 1):119–130CrossRefGoogle Scholar
  37. Magee JC (1998) Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci 18:7613–7624CrossRefGoogle Scholar
  38. McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23CrossRefGoogle Scholar
  39. Migliore M, Messineo L, Ferrante M (2004) Dendritic Ih selectively blocks temporal summation of unsynchronized distal inputs in CA1 pyramidal neurons. J Comput Neurosci 16:5–13CrossRefGoogle Scholar
  40. Montgomery SM, Sirota A, Buzsáki G (2008) Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 28:6731–6741CrossRefGoogle Scholar
  41. Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts θ modulation of γ in a computer model of hippocampus. J Neurosci 31:11733–11743CrossRefGoogle Scholar
  42. Orbán G, Kiss T, Erdi P (2006) Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. J Neurophysiol 96:2889–2904CrossRefGoogle Scholar
  43. Pastoll H, Solanka L, van Rossum MCW, Nolan MF (2013) Feedback inhibition enables θ-nested γ oscillations and grid firing fields. Neuron 77:141–154CrossRefGoogle Scholar
  44. Penttonen M, Kamondi A, Acsády L, Buzsáki G (1998) Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo. Eur J Neurosci 10:718–728CrossRefGoogle Scholar
  45. Petsche H, Stumpf C, Gogolak G (1962) The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. I. the control of hippocampus arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol 14:202–211CrossRefGoogle Scholar
  46. Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons. J Comput Neurosci 1:39–60CrossRefGoogle Scholar
  47. Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Whittington MA, Kopell N (2005) Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. J Neurophysiol 94:1509–1518CrossRefGoogle Scholar
  48. Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2:539–550CrossRefGoogle Scholar
  49. Saraga F, Wu CP, Zhang L, Skinner FK (2003) Active dendrites and spike propagation in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol (Lond) 552:673–689CrossRefGoogle Scholar
  50. Sekulić V, Skinner FK (2017) Computational models of O-LM cells are recruited by low or high theta frequency inputs depending on h-channel distributions. eLife 6:e22962CrossRefGoogle Scholar
  51. Sik A, Penttonen M, Ylinen A, Buzsáki G (1995) Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15:6651–6665CrossRefGoogle Scholar
  52. Singer W (1999) Neuronal synchrony: a versatile code for the definition of relations? Neuron 24(49–65):111–125Google Scholar
  53. Skinner F (2006) Conductance-based models. Scholarpedia 1:1408CrossRefGoogle Scholar
  54. Strata F (1998) Intrinsic oscillations in CA3 hippocampal pyramids: physiological relevance to theta rhythm generation. Hippocampus 8:666–679CrossRefGoogle Scholar
  55. Tiesinga PH, Fellous JM, José JV, Sejnowski TJ (2001) Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus 11:251–274CrossRefGoogle Scholar
  56. Tort ABL, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ (2007) On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci U S A 104:13490–13495CrossRefGoogle Scholar
  57. Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ (2008) Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A 105:20517–20522CrossRefGoogle Scholar
  58. Traub RD, Miles R (1991) Neuronal networks of the hippocampus. Cambridge University Press, New YorkCrossRefGoogle Scholar
  59. Traub RD, Jefferys JGR, Whittington MA (1999) Fast oscillations in cortical circuits. MIT Press, Cambridge, MAGoogle Scholar
  60. Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268CrossRefGoogle Scholar
  61. Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402–6413CrossRefGoogle Scholar
  62. Warman EN, Durand DM, Yuen GL (1994) Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. J Neurophysiol 71:2033–2045CrossRefGoogle Scholar
  63. White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5:5–16CrossRefGoogle Scholar
  64. White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A 97:8128–8133CrossRefGoogle Scholar
  65. Whittington MA, Traub RD, Jefferys JG (1995) Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:612–615CrossRefGoogle Scholar
  66. Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612CrossRefGoogle Scholar
  67. Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bähner F, Both M, Tort ABL, Kopell NJ, Wisden W, Monyer H (2009) Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 106:3561–3566CrossRefGoogle Scholar
  68. Ylinen A, Soltész I, Bragin A, Penttonen M, Sik A, Buzsáki G (1995) Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus 5:78–90CrossRefGoogle Scholar

Further Reading

  1. Börgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509–538CrossRefGoogle Scholar
  2. Börgers C, Kopell N (2005) Effects of noisy drive on rhythms in networks of excitatory and inhibitory neurons. Neural Comput 17:557–608CrossRefGoogle Scholar
  3. Kopell N, Ermentrout B (2004) Chemical and electrical synapses perform complementary roles in the synchronization of interneuronal networks. Proc Natl Acad Sci U S A 101:15482–15487CrossRefGoogle Scholar
  4. Traub RD, Jefferys JG, Whittington MA (1997) Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J Comput Neurosci 4:141–150CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Krembil Research InstituteUniversity Health NetworkTorontoCanada
  2. 2.Medicine (Neurology) and PhysiologyUniversity of TorontoTorontoCanada

Section editors and affiliations

  • Frances K. Skinner
    • 1
    • 2
  1. 1.Krembil Research InstituteUniversity Health NetworkTorontoCanada
  2. 2.Medicine (Neurology) and PhysiologyUniversity of TorontoTorontoCanada