Skip to main content

Biophysical Models of Calcium-Dependent Exocytosis

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 64 Accesses

Synonyms

Non-constitutive exocytosis; Regulated exocytosis

Definition

Calcium-dependent exocytosis is the biochemically controlled fusion of the bilipid secretory vesicle membrane with the bilipid cell membrane, triggered by the binding of several calcium ions (Ca2+) to control proteins such as synaptotagmins anchored at the interface between these two membranes. Exocytosis results in the release of vesicle contents into the extracellular space, namely the release of neurotransmitter into the synaptic cleft in the case of neuronal synapses and neuromuscular junctions, or the secretion of hormone into the blood stream in the case of endocrine cells. Exocytosis also allows the transmembrane proteins contained in the vesicle membrane to be incorporated into the cell membrane, although such membrane protein trafficking is more characteristic of Ca2+-independent, constitutive exocytosis.

Detailed Description

In synapses, neuromuscular junctions, and endocrine cells, exocytosis of a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barg S, Ma X, Eliasson L, Galvanovskis J, Gopel SO, Obermuller S, Platzer J, Renstrom E, Trus M, Atlas D, Striessnig J, Rorsman P (2001) Fast exocytosis with few Ca2+ channels in insulin-secreting mouse pancreatic B cells. Biophys J 81:3308–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR, Farnell L, Gibson WG (2004) The facilitated probability of quantal secretion within an array of calcium channels of an active zone at the amphibian neuromuscular junction. Biophys J 86:2674–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertram R, Sherman A, Stanley EF (1996) Single-domain/bound calcium hypothesis of transmitter release and facilitation. Biophys J 75:1919–1931

    CAS  Google Scholar 

  • Bertram R, Smith GD, Sherman A (1999) Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys J 76:735–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutner D, Voets T, Neher E, Moser T (2001) Calcium dependence of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse. Neuron 29:681–690

    Article  CAS  PubMed  Google Scholar 

  • Bohme MA, Grasskamp AT, Walter AM (2018) Regulation of synaptic release-site Ca(2+) channel coupling as a mechanism to control release probability and short-term plasticity. FEBS Lett 592:3516–3531

    Article  PubMed  CAS  Google Scholar 

  • Bollmann JH, Sakmann B (2005) Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci 8:426–434

    Article  CAS  PubMed  Google Scholar 

  • Bollmann JH, Sakmann B, Borst JG (2000) Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289:953–957

    Article  CAS  PubMed  Google Scholar 

  • Bornschein G, Schmidt H (2018) Synaptotagmin Ca(2+) sensors and their spatial coupling to presynaptic Cav channels in central cortical synapses. Front Mol Neurosci 11:494

    Article  CAS  PubMed  Google Scholar 

  • Bornschein G, Arendt O, Hallermann S, Brachtendorf S, Eilers J, Schmidt H (2013) Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation. J Physiol 591:3355–3370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brachtendorf S, Eilers J, Schmidt H (2015) A use-dependent increase in release sites drives facilitation at calretinin-deficient cerebellar parallel-fiber synapses. Front Cell Neurosci 9:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bucurenciu I, Kulik A, Schwaller B, Frotscher M, Jonas P (2008) Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron 57:536–545

    Article  CAS  PubMed  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3:498–508

    Article  CAS  PubMed  Google Scholar 

  • Chen YD, Wang S, Sherman A (2008) Identifying the targets of the amplifying pathway for insulin secretion in pancreatic beta-cells by kinetic modeling of granule exocytosis. Biophys J 95:2226–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, von Gersdorff H (2012) Ca(2+) influx and neurotransmitter release at ribbon synapses. Cell Calcium 52:208–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow RH, Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63

    Article  CAS  PubMed  Google Scholar 

  • Chung C, Raingo J (2013) Vesicle dynamics: how synaptic proteins regulate different modes of neurotransmission. J Neurochem 126:146–154

    Article  CAS  PubMed  Google Scholar 

  • Coggins M, Zenisek D (2009) Evidence that exocytosis is driven by calcium entry through multiple calcium channels in goldfish retinal bipolar cells. J Neurophysiol 101:2601–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittman JS, Kreitzer AC, Regehr WG (2000) Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J Neurosci 20:1374–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittrich M, Pattillo JM, King JD, Cho S, Stiles JR, Meriney SD (2013) An excess-calciumbinding-site model predicts neurotransmitter release at the neuromuscular junction. Biophys J 104:2751–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge FA, Rahamimoff R (1967) Cooperative action of calcium ions in transmitter release at the neuromuscular junction. J Physiol 193:419–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2012) Nanodomain coupling between Ca(2)(+) channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13:7–21

    Article  CAS  Google Scholar 

  • Elmqvist D, Quastel DMJ (1965) A quantitative study of end-plate potentials in isolated human muscle. J Physiol 178:505–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003) Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37:801–811

    Article  CAS  PubMed  Google Scholar 

  • Gandasi NR, Yin P, Riz M, Chibalina MV, Cortese G, Lund PE, Matveev V, Rorsman P, Sherman A, Pedersen MG, Barg S (2017) Ca2+ channel clustering with insulin-containing granules is disturbed in type 2 diabetes. J Clin Invest 127:2353–2364

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentile L, Stanley EF (2005) A unified model of presynaptic release site gating by calcium channel domains. Eur J Neurosci 21:278–282

    Article  PubMed  Google Scholar 

  • Glavinovic MI, Rabie HR (2001) Monte Carlo evaluation of quantal analysis in the light of Ca2+ dynamics and the geometry of secretion. Pflugers Arch 443:132–145

    Article  CAS  PubMed  Google Scholar 

  • Han X, Wang CT, Bai J, Chapman ER, Jackson MB (2004) Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–292

    Article  CAS  PubMed  Google Scholar 

  • Heidelberger R, Heinemann C, Neher E, Matthews G (1994) Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371:513–515

    Article  CAS  PubMed  Google Scholar 

  • Heil P, Neubauer H (2010) Summing across different active zones can explain the quasi-linear Ca-dependencies of exocytosis by receptor cells. Front Synaptic Neurosci 2:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann C, von Ruden L, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflugers Arch 424:105–112

    Article  CAS  PubMed  Google Scholar 

  • Heinemann C, Chow RH, Neher E, Zucker RS (1994) Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J 67:2546–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoi N, Sakaba T, Neher E (2007) Quantitative analysis of calcium-dependent vesicle recruitment and its functional role at the calyx of Held synapse. J Neurosci 27:14286–14298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SL, Franz C, Kuhn S, Furness DN, Ruttiger L, Munkner S, Rivolta MN, Seward EP, Herschman HR, Engel J, Knipper M, Marcotti W (2010) Synaptotagmin IV determines the linear Ca2+ dependence of vesicle fusion at auditory ribbon synapses. Nat Neurosci 13:45–52

    Article  CAS  PubMed  Google Scholar 

  • Kaeser PS, Regehr WG (2014) Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol 76:333–363

    Article  CAS  PubMed  Google Scholar 

  • Kasai H (1999) Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22:88–93

    Article  CAS  PubMed  Google Scholar 

  • Kochubey O, Schneggenburger R (2011) Synaptotagmin increases the dynamic range of synapses by driving Ca(2)+-evoked release and by clamping a near-linear remaining Ca(2)+ sensor. Neuron 69:736–748

    Article  CAS  PubMed  Google Scholar 

  • Kochubey O, Han Y, Schneggenburger R (2009) Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held. J Physiol 587:3009–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Ho WK, Neher E, Lee SH (2013) Superpriming of synaptic vesicles after their recruitment to the readily releasable pool. Proc Natl Acad Sci U S A 110:15079–15084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liley AW, North KA (1953) An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J Neurophysiol 16:509–527

    Article  CAS  PubMed  Google Scholar 

  • Lou X, Scheuss V, Schneggenburger R (2005) Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature 435:497–501

    Article  CAS  PubMed  Google Scholar 

  • Luo F, Bacaj T, Sudhof TC (2015a) Synaptotagmin-7 is essential for Ca2+-triggered delayed asynchronous release but not for Ca2+-dependent vesicle priming in retinal ribbon synapses. J Neurosci 35:11024–11033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo F, Dittrich M, Cho S, Stiles JR, Meriney SD (2015b) Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction. J Neurophysiol 113:2480–2489

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Kelly L, Ingram J, Price TJ, Meriney SD, Dittrich M (2015) New insights into short-term synaptic facilitation at the frog neuromuscular junction. J Neurophysiol 113:71–87

    Article  CAS  PubMed  Google Scholar 

  • Martin TF (2003) Tuning exocytosis for speed: fast and slow modes. Biochim Biophys Acta 1641:157–165

    Article  CAS  PubMed  Google Scholar 

  • Matveev V, Bertram R, Sherman A (2006) Residual Bound Ca2+ Can Account for the Effects of Ca2+ Buffers on Synaptic Facilitation. J Neurophysiol 96:3389–3397

    Article  PubMed  Google Scholar 

  • Matveev V (2016) Pade approximation of a stationary single-channel Ca2+ nanodomain. Biophys J 111:2062–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveev V, Bertram R, Sherman A (2009) Ca2+ current versus Ca2+ channel cooperativity of exocytosis. J Neurosci 29:12196–12209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveev V, Bertram R, Sherman A (2011) Calcium cooperativity of exocytosis as a measure of Ca(2)+ channel domain overlap. Brain Res 1398:126–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2002) Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J Neurosci 22:1648–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinrenken CJ, Borst JG, Sakmann B (2003) Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held. J Physiol 547:665–689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michalski N, Goutman JD, Auclair SM, Boutet de Monvel J, Tertrais M, Emptoz A, Parrin A, Nouaille S, Guillon M, Sachse M, Ciric D, Bahloul A, Hardelin JP, Sutton RB, Avan P, Krishnakumar SS, Rothman JE, Dulon D, Safieddine S, Petit C (2017) Otoferlin acts as a Ca(2+) sensor for vesicle fusion and vesicle pool replenishment at auditory hair cell ribbon synapses. elife 6:e31013. https://elifesciences.org/articles/31013v1

  • Millar AG, Zucker RS, Ellis-Davies GC, Charlton MP, Atwood HL (2005) Calcium sensitivity of neurotransmitter release differs at phasic and tonic synapses. J Neurosci 25:3113–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moghadam PK, Jackson MB (2013) The functional significance of synaptotagmin diversity in neuroendocrine secretion. Front Endocrinol 4:124

    Article  Google Scholar 

  • Montefusco F, Pedersen MG (2018) Explicit theoretical analysis of how the rate of exocytosis depends on local control by Ca(2+) channels. Comput Math Methods Med 2018:5721097

    Article  PubMed  PubMed Central  Google Scholar 

  • Moser T, Neef A, Khimich D (2006) Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse. J Physiol 576:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mutch SA, Kensel-Hammes P, Gadd JC, Fujimoto BS, Allen RW, Schiro PG, Lorenz RM, Kuyper CL, Kuo JS, Bajjalieh SM, Chiu DT (2011) Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci 31:1461–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H (2012) Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci U S A 109:14657–14662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    Article  CAS  PubMed  Google Scholar 

  • Neher E (2012) Introduction: regulated exocytosis. Cell Calcium 52:196–198

    Article  CAS  PubMed  Google Scholar 

  • Neher E (2017) Some subtle lessons from the calyx of Held synapse. Biophys J 112:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neher E, Sakaba T (2008) Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59:861–872

    Article  CAS  PubMed  Google Scholar 

  • Nouvian R, Neef J, Bulankina AV, Reisinger E, Pangrsic T, Frank T, Sikorra S, Brose N, Binz T, Moser T (2011) Exocytosis at the hair cell ribbon synapse apparently operates without neuronal SNARE proteins. Nat Neurosci 14:411–413

    Article  CAS  PubMed  Google Scholar 

  • Oheim M, Kirchhoff F, Stuhmer W (2006) Calcium microdomains in regulated exocytosis. Cell Calcium 40:423–439

    Article  CAS  PubMed  Google Scholar 

  • Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62:539–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pangrsic T, Reisinger E, Moser T (2012) Otoferlin: a multi-C2 domain protein essential for hearing. Trends Neurosci 35:671–680

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MG, Sherman A (2009) Newcomer insulin secretory granules as a highly calcium-sensitive pool. Proc Natl Acad Sci U S A 106:7432–7436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quastel DM, Guan YY, Saint DA (1992) The relation between transmitter release and Ca2+ entry at the mouse motor nerve terminal: role of stochastic factors causing heterogeneity. Neuroscience 51:657–671

    Article  CAS  PubMed  Google Scholar 

  • Raingo J, Khvotchev M, Liu P, Darios F, Li YC, Ramirez DM, Adachi M, Lemieux P, Toth K, Davletov B, Kavalali ET (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15:738–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Cell 127:277–289

    Article  CAS  PubMed  Google Scholar 

  • Rozov A, Bolshakov AP, Valiullina-Rakhmatullina F (2019) The ever-growing puzzle of asynchronous release. Front Cell Neurosci 13:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaba T (2008) Two Ca(2+)-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 57:406–419

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Brachtendorf S, Arendt O, Hallermann S, Ishiyama S, Bornschein G, Gall D, Schiffmann SN, Heckmann M, Eilers J (2013) Nanodomain coupling at an excitatory cortical synapse. Curr Biol 23:244–249

    Article  CAS  PubMed  Google Scholar 

  • Schneggenburger R, Neher E (2000) Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406:889–893

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A, Diamond JS (2012) The number and organization of Ca2+ channels in the active zone shapes neurotransmitter release from Schaffer collateral synapses. J Neurosci 32:18157–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahrezaei V, Delaney KR (2005) Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release. J Neurophysiol 94:1912–1919

    Article  CAS  PubMed  Google Scholar 

  • Shahrezaei V, Cao A, Delaney KR (2006) Ca2+ from one or two channels controls fusion of a single vesicle at the frog neuromuscular junction. J Neurosci 26:13240–13249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Chen W, Vyleta NP, Williams C, Lee CH, Phillips C, Andresen MC (2012) Calcium regulation of spontaneous and asynchronous neurotransmitter release. Cell Calcium 52:226–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen JB (2004) Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles. Pflugers Arch 448:347–362

    Article  CAS  PubMed  Google Scholar 

  • Stanley EF (2015) Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling. Channels (Austin) 9:324–333

    Article  Google Scholar 

  • Stanley EF (2016) The nanophysiology of fast transmitter release. Trends Neurosci 39:183–197

    Article  CAS  PubMed  Google Scholar 

  • Sterling P, Matthews G (2005) Structure and function of ribbon synapses. Trends Neurosci 28:20–29

    Article  CAS  PubMed  Google Scholar 

  • Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21:415–424

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, Sudhof TC (2007) A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846

    Article  CAS  PubMed  Google Scholar 

  • Taschenberger H, Woehler A, Neher E (2016) Superpriming of synaptic vesicles as a common basis for intersynapse variability and modulation of synaptic strength. Proc Natl Acad Sci U S A 113:E4548–E4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreson WB, Rabl K, Townes-Anderson E, Heidelberger R (2004) A highly Ca2+-sensitive pool of vesicles contributes to linearity at the rod photoreceptor ribbon synapse. Neuron 42:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turecek J, Regehr WG (2018) Synaptotagmin 7 mediates both facilitation and asynchronous release at granule cell synapses. J Neurosci 38:3240–3251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turecek J, Regehr WG (2019) Neuronal regulation of fast synaptotagmin isoforms controls the relative contributions of synchronous and asynchronous release. Neuron 101:938–949.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhage M, Toonen RF (2007) Regulated exocytosis: merging ideas on fusing membranes. Curr Opin Cell Biol 19:402–408

    Article  CAS  PubMed  Google Scholar 

  • Voets T (2000) Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices. Neuron 28:537–545

    Article  CAS  PubMed  Google Scholar 

  • Voets T, Neher E, Moser T (1999) Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23:607–615

    Article  CAS  PubMed  Google Scholar 

  • von Ruden L, Neher E (1993) A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science 262:1061–1065

    Article  Google Scholar 

  • Wadel K, Neher E, Sakaba T (2007) The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron 53:563–575

    Article  CAS  PubMed  Google Scholar 

  • Walter AM, Bohme MA, Sigrist SJ (2018) Vesicle release site organization at synaptic active zones. Neurosci Res 127:3–13

    Article  CAS  PubMed  Google Scholar 

  • Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388

    Article  CAS  PubMed  Google Scholar 

  • Weber AM, Wong FK, Tufford AR, Schlichter LC, Matveev V, Stanley EF (2010) N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release. Nat Neurosci 13:1348–1350

    Article  CAS  PubMed  Google Scholar 

  • Weber JP, Toft-Bertelsen TL, Mohrmann R, Delgado-Martinez I, Sorensen JB (2014) Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PLoS One 9:e114033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss JN (1997) The Hill equation revisited: uses and misuses. FASEB J 11:835–841

    Article  CAS  PubMed  Google Scholar 

  • Wolfel M, Schneggenburger R (2003) Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J Neurosci 23:7059–7068

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfel M, Lou X, Schneggenburger R (2007) A mechanism intrinsic to the vesicle fusion machinery determines fast and slow transmitter release at a large CNS synapse. J Neurosci 27:3198–3210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Worden MK, Bykhovskaia M, Hackett JT (1997) Facilitation at the lobster neuromuscular junction: a stimulus-dependent mobilization model. J Neurophysiol 78:417–428

    Article  CAS  PubMed  Google Scholar 

  • Wu MM, Llobet A, Lagnado L (2009) Loose coupling between calcium channels and sites of exocytosis in chromaffin cells. J Physiol 587:5377–5391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada MW, Zucker RS (1992) Time course of transmitter release calculated from stimulations of a calcium diffusion model. Biophys J 61:671–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gillis KD (2004) A highly Ca2+-sensitive pool of granules is regulated by glucose and protein kinases in insulin-secreting INS-1 cells. J Gen Physiol 124:641–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Udayasankar S, Dunning J, Chen P, Gillis KD (2002) A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells. Proc Natl Acad Sci U S A 99:17060–17065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Gaffaney JD, Kwon SE, Chapman ER (2011) Doc2 is a Ca2+ sensor required for asynchronous neurotransmitter release. Cell 147:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker RS, Fogelson AL (1986) Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc Natl Acad Sci U S A 83:3032–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF grant DMS-1517085

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Matveev .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Matveev, V. (2020). Biophysical Models of Calcium-Dependent Exocytosis. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_178-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_178-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Biophysical Models of Calcium-Dependent Exocytosis
    Published:
    17 January 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_178-2

  2. Original

    Calcium-Dependent Exocytosis, Biophysical Models of
    Published:
    05 April 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_178-1