Skip to main content

Neuromorphic Sensors, Cochlea

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdalla H, Horiuchi TK (2005) An ultrasonic filterbank with spiking neurons. IEEE Int Symp Circuits Syst 5:4201–4204

    Google Scholar 

  • Abdalla H, Horiuchi TK (2008) Binaural spectral cues for ultrasonic localization. IEEE Int Symp Circuits Syst 2110–2113

    Google Scholar 

  • Abdollahi M, Liu S-C (2011) Speaker-independent isolated digit recognition using an AER silicon cochlea. Biomed Circuits Syst Conf 269–272

    Google Scholar 

  • Baker MW, Sarpeshkar R (2003) A low-power high-PSRR current-mode microphone preamplifier. IEEE J Solid-State Circuits 38:1671–1678

    Article  Google Scholar 

  • Chakrabartty S, Liu S-C (2010) Exploiting spike-based dynamics in a silicon cochlea for speaker identification. IEEE Int Symp Circuits Syst 513–516

    Google Scholar 

  • Chan V, Liu S-C, van Schaik A (2007) AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst I Regul Pap 54:48–59

    Article  Google Scholar 

  • Chan V, Jin C, van Schaik A (2010) Adaptive sound localization with a silicon cochlea pair. Front Neurosci 4(196):1–11, doi:10.3389/fnins.2010.00196

    Google Scholar 

  • Delbruck T (2007) jAER open source project. Available http://jaerproject.net

  • Delbruck T, Lichtsteiner P (2006) Fully programmable bias current generator with 24 bit resolution per bias. IEEE Int Symp Circuits Syst:2849–2852

    Google Scholar 

  • Finger H, Liu S-C (2011) Estimating the location of a sound source with a spike-timing localization algorithm. IEEE Int Symp Circuits Syst 2461–2464

    Google Scholar 

  • Fragniere E (2005) A 100-channel analog CMOS auditory filter bank for speech recognition. ISSCC Dig Tech Pap 140–589

    Google Scholar 

  • Georgiou J, Toumazou C (2005) A 126-uW cochlear chip for a totally implantable system. IEEE J Solid-State Circuits 40:430–443

    Article  Google Scholar 

  • Hamilton T, Jin C, van Schaik A, Tapson J (2008) An active 2-D silicon cochlea. IEEE Trans Biomed Circuits Syst 2:30–43

    Article  CAS  PubMed  Google Scholar 

  • Katsiamis A, Drakakis E, Lyon R (2009) A 4.5uW, 120 + dB, log-domain cochlea channel with AGC. IEEE J Solid-State Circuits 44:1006–1022

    Article  Google Scholar 

  • Kumar N, Himmelbauer W, Cauwenberghs G, Andreou A (1998) An analog VLSI chip with asynchronous interface for auditory feature extraction. IEEE Trans Circuits Syst II 45:600–606

    Article  Google Scholar 

  • Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti S, Gillespie D (1993) Silicon auditory processors as computer peripherals. IEEE Trans Neural Netw 4:523–528

    Article  CAS  PubMed  Google Scholar 

  • Li C-H, Delbruck T, Liu S-C (2012) Real-time speaker identification using the AEREAR2 event-based silicon cochlea. IEEE Int Symp Circuits Syst 1159–1162

    Google Scholar 

  • Liu S-C, Delbruck T (2010) Neuromorphic sensory systems. Curr Opin Neurobiol 20:1–8

    Article  Google Scholar 

  • Liu S-C, van Schaik A, Minch B, DelbrĂ¼ck T (2010) Event-based 64-channel binaural silicon cochlea with Q enhancement mechanisms. IEEE Int Symp Circuits Syst 2027–2030

    Google Scholar 

  • Liu S-C, Mesgarani N, Harris J, Hermansky H (2010) The use of spike-based representations for hardware audition systems. IEEE Int Symp Circuits Syst 505–508

    Google Scholar 

  • Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans Acoust Speech Signal Process 36:1119–1134

    Article  Google Scholar 

  • Palmer AR, Russell IJ (1986) Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells. Hear Res 24:1–15

    Article  CAS  PubMed  Google Scholar 

  • Sarpeshkar R, Lyon RF, Mead C (1998) A low-power wide-dynamic-range analog VLSI cochlea. Analog Integr Circuits Signal Process 16:245–274

    Article  Google Scholar 

  • Sarpeshkar R, Salthouse C, Sit JJ, Baker M, Zhak S, Lu T, Turicchia L, Balster S (2005) An ultra-low-power programmable analog bionic ear processor. IEEE Trans Biomed Eng 2:711–727

    Article  Google Scholar 

  • Shamma S (1985) Speech processing in the auditory system I: the representation of speech sounds in the responses of the auditory nerve. J Acoust Soc Am 78:1612–1621

    Article  CAS  PubMed  Google Scholar 

  • van Schaik A, Fragnière E, Vittoz E (1996) Improved silicon cochlea using compatible lateral bipolar transistors. Adv Neural Inf Process Syst 8:671–677

    Google Scholar 

  • Watts L, Kerns D, Lyon R, Mead C (1992) Improved implementation of the silicon cochlea. IEEE J Solid State Circuits 27:692–700

    Article  Google Scholar 

  • Wen B, Boahen K (2006) A 360-channel speech preprocessor that emulates the cochlear amplifier. ISSCC Dig Tech Pap 556–557

    Google Scholar 

  • Wen B, Boahen K (2009) A silicon cochlea with active coupling. IEEE Trans Biomed Circuits Syst 3:444–455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Chii Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Liu, SC., van Schaik, A. (2014). Neuromorphic Sensors, Cochlea. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_118-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_118-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics