Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Theta-Gamma Cross-Frequency Analyses (Hippocampus)

  • Robson Scheffer-Teixeira
  • Adriano B. L. Tort
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7320-6_100658-1

Synonyms

Definition

Brain oscillations of different frequencies can coexist and influence each other. A cross-frequency interaction occurs when a feature from one oscillation (i.e., instantaneous amplitude, phase, or frequency) depends on a feature from another oscillation at a distinct frequency. These phenomena have been collectively called cross-frequency coupling (CFC). There are multiple types of CFC, such as phase-amplitude coupling, amplitude-amplitude coupling, and n:m phase-locking. Several metrics have been devised to quantify CFC.

Detailed Description

The study of the electrical activity produced by the brain dates back to Richard Caton in 1875, who employed a galvanometer to record from the cortex of rabbits (Geddes 1987). Neuronal spikes and extracellular field potentials have been since recorded from several brain regions of different species, and...
This is a preview of subscription content, log in to check access.

References

  1. Aru J, Aru J, Priesemann V, Wibral M, Lana L, Pipa G, Singer W, Vicente R (2015) Untangling cross-frequency coupling in neuroscience. Curr Opin Neurobiol 31:51–61CrossRefPubMedGoogle Scholar
  2. Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phase-phase coupling between θ and γ oscillations in the hippocampus. J Neurosci 32:423–435.  https://doi.org/10.1523/JNEUROSCI.4122-11.2012CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berman JI, McDaniel J, Liu S, Cornew L, Gaetz W, Roberts TPL, Edgar JC (2012) Variable bandwidth filtering for improved sensitivity of cross-frequency coupling metrics. Brain Connect 2:155–163.  https://doi.org/10.1089/brain.2012.0085CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bruns A, Eckhorn R (2004) Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int J Psychophysiol 51:97–116CrossRefPubMedGoogle Scholar
  5. Bruns A, Eckhorn R, Jokeit H, Ebner A (2000) Amplitude envelope correlation detects coupling among incoherent brain signals. Neuroreport 11:1509–1514CrossRefPubMedGoogle Scholar
  6. Buzsáki G (2002) Theta oscillations in the hippocampus. Neuron 33:325–340CrossRefPubMedGoogle Scholar
  7. Canolty RT, Knight RT (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506–515.  https://doi.org/10.1016/j.tics.2010.09.001CrossRefPubMedPubMedCentralGoogle Scholar
  8. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313:1626–1628.  https://doi.org/10.1126/science.1128115CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cohen MX (2008) Assessing transient cross-frequency coupling in EEG data. J Neurosci Methods 168:494–499.  https://doi.org/10.1016/j.jneumeth.2007.10.012CrossRefPubMedGoogle Scholar
  10. Cohen MX (2017) Multivariate cross-frequency coupling via generalized eigendecomposition. eLife 6:e21792.  https://doi.org/10.7554/eLife.21792CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cole SR, van der Meij R, Peterson EJ, de Hemptinne C, Starr PA, Voytek B (2017) Nonsinusoidal beta oscillations reflect cortical pathophysiology in Parkinson’s disease. J Neurosci 37:4830–4840.  https://doi.org/10.1523/JNEUROSCI.2208-16.2017CrossRefPubMedPubMedCentralGoogle Scholar
  12. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser M-B, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–357CrossRefPubMedGoogle Scholar
  13. Dvorak D, Fenton AA (2014) Toward a proper estimation of phase-amplitude coupling in neural oscillations. J Neurosci Methods 225:42–56.  https://doi.org/10.1016/j.jneumeth.2014.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 29:195–217.  https://doi.org/10.1007/BF00160535CrossRefGoogle Scholar
  15. Geddes LA (1987) What did Caton see? Electroencephalogr Clin Neurophysiol 67:2–6CrossRefPubMedGoogle Scholar
  16. Gerber EM, Sadeh B, Ward A, Knight RT, Deouell LY (2016) Non-sinusoidal activity can produce cross-frequency coupling in cortical signals in the absence of functional interaction between neural sources. PLoS One 11:e0167351.  https://doi.org/10.1371/journal.pone.0167351CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hoppensteadt FC, Izhikevich EM (1998) Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? Biosystems 48:85–94CrossRefPubMedGoogle Scholar
  18. Huizinga JD, Chen J-H, Zhu YF, Pawelka A, McGinn RJ, Bardakjian BL, Parsons SP, Kunze WA, Wu RY, Bercik P, Khoshdel A, Chen S, Yin S, Zhang Q, Yu Y, Gao Q, Li K, Hu X, Zarate N, Collins P, Pistilli M, Ma J, Zhang R, Chen D (2014) The origin of segmentation motor activity in the intestine. Nat Commun 5:3326.  https://doi.org/10.1038/ncomms4326CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hurtado JM, Rubchinsky LL, Sigvardt KA (2004) Statistical method for detection of phase-locking episodes in neural oscillations. J Neurophysiol 91:1883–1898.  https://doi.org/10.1152/jn.00853.2003CrossRefPubMedGoogle Scholar
  20. Hyafil A (2015) Misidentifications of specific forms of cross-frequency coupling: three warnings. Front Neurosci 9:370.  https://doi.org/10.3389/fnins.2015.00370CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hyafil A (2017) Disharmony in neural oscillations. J Neurophysiol 118:1–3.  https://doi.org/10.1152/jn.00026.2017CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hyafil A, Giraud A-L, Fontolan L, Gutkin B (2015) Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci 38:725–740.  https://doi.org/10.1016/j.tins.2015.09.001CrossRefPubMedGoogle Scholar
  23. Jiang H, Bahramisharif A, van Gerven MAJ, Jensen O (2015) Measuring directionality between neuronal oscillations of different frequencies. NeuroImage 118:359–367.  https://doi.org/10.1016/j.neuroimage.2015.05.044CrossRefPubMedGoogle Scholar
  24. Jirsa V, Müller V (2013) Cross-frequency coupling in real and virtual brain networks. Front Comput Neurosci 7.  https://doi.org/10.3389/fncom.2013.00078
  25. Kramer MA, Eden UT (2013) Assessment of cross-frequency coupling with confidence using generalized linear models. J Neurosci Methods 220:64–74.  https://doi.org/10.1016/j.jneumeth.2013.08.006CrossRefPubMedGoogle Scholar
  26. Kramer MA, Tort ABL, Kopell NJ (2008) Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. J Neurosci Methods 170:352–357.  https://doi.org/10.1016/j.jneumeth.2008.01.020CrossRefPubMedGoogle Scholar
  27. la Tour TD, Tallot L, Grabot L, Doyère V, van Wassenhove V, Grenier Y, Gramfort A (2017) Non-linear auto-regressive models for cross-frequency coupling in neural time series. PLoS Comput Biol 13:e1005893.  https://doi.org/10.1371/journal.pcbi.1005893CrossRefGoogle Scholar
  28. Lachaux J-P, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208CrossRefPubMedGoogle Scholar
  29. Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J Neurophysiol 94:1904–1911.  https://doi.org/10.1152/jn.00263.2005CrossRefPubMedGoogle Scholar
  30. Li Q, Zheng C-G, Cheng N, Wang Y-Y, Yin T, Zhang T (2016) Two generalized algorithms measuring phase-amplitude cross-frequency coupling in neuronal oscillations network. Cogn Neurodyn 10:235–243.  https://doi.org/10.1007/s11571-015-9369-6CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lozano-Soldevilla D, Ter Huurne N, Oostenveld R (2016) Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality. Front Comput Neurosci 10:87.  https://doi.org/10.3389/fncom.2016.00087CrossRefPubMedPubMedCentralGoogle Scholar
  32. Masimore B, Kakalios J, Redish AD (2004) Measuring fundamental frequencies in local field potentials. J Neurosci Methods 138:97–105.  https://doi.org/10.1016/j.jneumeth.2004.03.014CrossRefPubMedGoogle Scholar
  33. Onslow ACE, Bogacz R, Jones MW (2011) Quantifying phase–amplitude coupling in neuronal network oscillations. Prog Biophys Mol Biol 105:49–57.  https://doi.org/10.1016/j.pbiomolbio.2010.09.007CrossRefPubMedGoogle Scholar
  34. Paluš M (2014) Multiscale atmospheric dynamics: cross-frequency phase-amplitude coupling in the air temperature. Phys Rev Lett 112:078702.  https://doi.org/10.1103/PhysRevLett.112.078702CrossRefPubMedGoogle Scholar
  35. Palva JM, Palva S, Kaila K (2005) Phase synchrony among neuronal oscillations in the human cortex. J Neurosci 25:3962–3972.  https://doi.org/10.1523/JNEUROSCI.4250-04.2005CrossRefPubMedGoogle Scholar
  36. Panzeri S, Senatore R, Montemurro MA, Petersen RS (2007) Correcting for the sampling bias problem in spike train information measures. J Neurophysiol 98:1064–1072.  https://doi.org/10.1152/jn.00559.2007CrossRefPubMedGoogle Scholar
  37. Penny WD, Duzel E, Miller KJ, Ojemann JG (2008) Testing for nested oscillation. J Neurosci Methods 174:50–61.  https://doi.org/10.1016/j.jneumeth.2008.06.035CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pittman-Polletta B, Hsieh W-H, Kaur S, Lo M-T, Hu K (2014) Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions. J Neurosci Methods 226:15–32.  https://doi.org/10.1016/j.jneumeth.2014.01.006CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rosenblum M, Pikovsky A, Kurths J, Schäfer C, Tass PA (2001) Chapter 9 phase synchronization: from theory to data analysis. In: Moss F, Gielen S (eds) Handbook of biological physics. North-Holland, Amsterdam, pp 279–321Google Scholar
  40. Samiee S, Baillet S (2017) Time-resolved phase-amplitude coupling in neural oscillations. NeuroImage 159:270–279.  https://doi.org/10.1016/j.neuroimage.2017.07.051CrossRefPubMedGoogle Scholar
  41. Scheffer-Teixeira R, Tort AB (2016) On cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. Elife 5:e20515.  https://doi.org/10.7554/eLife.20515CrossRefPubMedPubMedCentralGoogle Scholar
  42. Scheffer-Teixeira R, Tort ABL (2017) Unveiling fast field oscillations through comodulation eNeuro 4:ENEURO 0079-17.2017CrossRefPubMedPubMedCentralGoogle Scholar
  43. Strogatz SH (2000) From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Phys Nonlinear Phenom 143:1–20.  https://doi.org/10.1016/S0167-2789(00)00094-4CrossRefGoogle Scholar
  44. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H-J (1998) Detection of n: m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294CrossRefGoogle Scholar
  45. Tort ABL, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ (2008) Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc Natl Acad Sci U S A 105:20517–20522.  https://doi.org/10.1073/pnas.0810524105CrossRefPubMedPubMedCentralGoogle Scholar
  46. Tort ABL, Komorowski R, Eichenbaum H, Kopell N (2010) Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J Neurophysiol 104:1195–1210.  https://doi.org/10.1152/jn.00106.2010CrossRefPubMedPubMedCentralGoogle Scholar
  47. van Driel J, Cox R, Cohen MX (2015) Phase-clustering bias in phase-amplitude cross-frequency coupling and its removal. J Neurosci Methods 254:60–72.  https://doi.org/10.1016/j.jneumeth.2015.07.014CrossRefPubMedGoogle Scholar
  48. van Wijk BCM, Jha A, Penny W, Litvak V (2015) Parametric estimation of cross-frequency coupling. J Neurosci Methods 243:94–102.  https://doi.org/10.1016/j.jneumeth.2015.01.032CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila K (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. Proc Natl Acad Sci U S A 101:5053–5057.  https://doi.org/10.1073/pnas.0305375101CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vinck M, van Wingerden M, Womelsdorf T, Fries P, Pennartz CMA (2010) The pairwise phase consistency: a bias-free measure of rhythmic neuronal synchronization. Neuro Image 51:112–122.  https://doi.org/10.1016/j.neuroimage.2010.01.073CrossRefPubMedGoogle Scholar
  51. Voytek B, D’Esposito M, Crone N, Knight RT (2013) A method for event-related phase/amplitude coupling. NeuroImage 64:416–424.  https://doi.org/10.1016/j.neuroimage.2012.09.023CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Robson Scheffer-Teixeira
    • 1
  • Adriano B. L. Tort
    • 1
  1. 1.Brain InstituteFederal University of Rio Grande do NorteNatalBrazil

Section editors and affiliations

  • Frances K. Skinner
    • 1
    • 2
    • 3
  1. 1.Krembil Research InstituteTorontoCanada
  2. 2.PhysiologyUniversity of TorontoTorontoCanada
  3. 3.Medicine (Neurology)University of TorontoTorontoCanada