Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Retrieval Models

  • Benno Stein
  • Tim Gollub
  • Maik Anderka
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_117-1




A characteristic property of a document. Usually, a document’s terms are used as features, but virtually every measurable document property can be chosen, such as word classes, average sentence lengths, principal components of term-document-occurrence matrices, or term synonyms.

Information need

Specifically here: A lack of information or knowledge that can be satisfied by a set of text documents.


Specifically here: A small set of terms that expresses a user’s information need.


The extent to which a document is capable to satisfy an information need. Within probabilistic retrieval models, relevance is modeled as a binary random variable.


A retrieval model provides a formal means to address (information) retrieval tasks with the aid of a computer.


A retrieval task is given if an information need is to be satisfied by exploiting an information resource. More...

This is a preview of subscription content, log in to check access.


  1. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022zbMATHGoogle Scholar
  2. Deerwester S, Dumais S, Landauer T, Furnas G, Harshman R (1990) Indexing by latent semantic analysis. J Am Soc Inf Sci 41(6):391–407CrossRefGoogle Scholar
  3. Gabrilovich E, Markovitch S (2007) Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: IJCAI 2007, proceedings of the 20th international joint conference on artificial intelligence, Hyderabad, 6–12 Jan 2007, pp 1606–1611Google Scholar
  4. Gurevych I, Hovy E, Slonim N, Stein B (2016) Debating technologies (Dagstuhl Seminar 15512). Dagstuhl Reports 5(12):18–46, doi:  10.4230/DagRep.5.12.18. URL http://drops.dagstuhl.de/opus/volltexte/2016/5803
  5. Le QV, Mikolov T (2014) Distributed representations of sentences and documents. In: Proceedings of the 31th international conference on machine learning (ICML2014), Beijing, pp 1188–1196Google Scholar
  6. Meyer zu Eißen S, Stein B, Potthast M (2005) The suffix tree document model revisited. In: Tochtermann K, Maurer H (eds) 5th international conference on knowledge management (IKNOW 05), Know-Center, Graz. Journal of Universal Computer Science, pp 596–603Google Scholar
  7. Page L et al. (1999) The pagerank citation ranking: bringing order to the weGoogle Scholar
  8. Ponte J, Croft W (1998) A language modeling approach to information retrieval. In: SIGIR’98: proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval. ACM Press, New York, pp 275–281. doi: 10.1145/290941.291008
  9. Potthast M, Stein B, Anderka M (2008) A Wikipedia-based multilingual retrieval model. In: Macdonald C, Ounis I, Plachouras V, Ruthven I, White R (eds) Advances in information retrieval. 30th European conference on IR research (ECIR 08). Lecture notes in computer science, vol 4956. Springer, Berlin/Heidelberg/New York, pp 522–530Google Scholar
  10. Robertson S (1997) The probability ranking principle in IR. Morgan Kaufmann Publishers, San FranciscoGoogle Scholar
  11. Robertson S, Sparck-Jones K (1976) Relevance weighting of search terms. J Am Soc Inf Sci 27(3):129–146CrossRefGoogle Scholar
  12. Robertson S, Walker S (1994) Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. In: SIGIR’94: proceedings of the 17th annual international ACM SIGIR conference on research and development in information retrieval. Springer, New York, pp 232–241Google Scholar
  13. Salton G, McGill M (1983) Introduction to modern information retrieval. McGraw-Hill, New YorkzbMATHGoogle Scholar
  14. Salton G, Wong A, Yang C (1975) A vector space model for automatic indexing. Commun ACM 18(11):613–620CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Bauhaus-Universität WeimarWeimarGermany
  2. 2.Bad ArolsenGermany

Section editors and affiliations

  • Thomas Gottron
    • 1
  • Stefan Schlobach
    • 2
  • Steffen Staab
    • 3
  1. 1.Institute for Web Science and TechnologiesUniversität Koblenz-LandauKoblenzGermany
  2. 2.YUAmsterdamThe Netherlands
  3. 3.Institute for Web Science and TechnologiesUniversität Koblenz-LandauKoblenzGermany