Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Core Decomposition of Massive, Information-Rich Graphs

  • Francesco Bonchi
  • Francesco Gullo
  • Andreas Kaltenbrunner
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-7163-9_110176-1

Synonyms

Glossary

Core decomposition

The set of all k-cores of a graph, for all k.

Core number (or core index)

For each vertex of a graph, the highest order of a core containing that vertex.

Degeneracy

The highest order of a core of a graph. It corresponds to the maximum core number over all vertices of the graph.

Distributed graph

Graph that is stored across multiple machines.

Graph (or network)

A set of objects (called vertices or nodes) connected to each other by links (also known as edges or arcs). Links can be represented as unordered or ordered pairs of vertices. In the former case, the graph is said to be undirected, otherwise it is directed. Links may be assigned weights. In this case, the graph is said weighted.

k-core (or core of order k)

Maximal subgraph where each vertex is connected to at least k other vertices within the subgraph.

k-shell

Subgraph induced by all vertices belonging...

This is a preview of subscription content, log in to check access.

References

  1. Aksu H, Canim M, Chang YC, Korpeoglu I, Ulusoy Ö (2014) Distributed k-core view materialization and maintenance for large dynamic graphs. IEEE Trans Knowledge Data Eng (TKDE) 26(10):2439–2452CrossRefGoogle Scholar
  2. Altaf-Ul-Amin M, Nishikata K, Koma T, Miyasato T, Shinbo Y, Md WC, Maeda M, Oshima T, Mori H, Kanaya S (2003) Prediction of protein functions based on k-cores of protein-protein interaction networks and amino acid sequences. Genome Inform 14:498–499Google Scholar
  3. Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2005) Large scale networks fingerprinting and visualization using the k-core decomposition. In: Proceedings of the international conference on neural information processing systems (NIPS), pp 41–50Google Scholar
  4. Alvarez-Hamelin JI, Dall’Asta L, Barrat A, Vespignani A (2008) K-core decomposition of internet graphs: hierarchies, self-similarity and measurement biases. Networks Heterogeneous Media 3(2):395–411MathSciNetCrossRefzbMATHGoogle Scholar
  5. Andersen R, Chellapilla K (2009) Finding dense subgraphs with size bounds. In: Proceedings of the international work on algorithms and models for the web-graph (WAW), pp 25–37Google Scholar
  6. Aragón P, Kappler KE, Kaltenbrunner A, Laniado D, Volkovich Y (2013) Communication dynamics in Twitter during political campaigns: the case of the 2011 Spanish national election. Policy & Internet 5(2):183–206CrossRefGoogle Scholar
  7. Azimi-Tafreshi N, Gómez-Gardeñes J, Dorogovtsev SN (2014) k-Core percolation on multiplex networks. Phys Rev E 90(3):032816CrossRefGoogle Scholar
  8. Bader GD, Hogue CWV (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2CrossRefGoogle Scholar
  9. Bae J, Kim S (2014) Identifying and ranking influential spreaders in complex networks by neighborhood coreness. Phys A: Stat Mech Appl 395:549–559MathSciNetCrossRefGoogle Scholar
  10. Barbieri N, Bonchi F, Galimberti E, Gullo F (2015) Efficient and effective community search. Data Mining Knowledge Discov 29(5):1406–1433MathSciNetCrossRefGoogle Scholar
  11. Batagelj V, Zaveršnik M (2011) Fast algorithms for determining (generalized) core groups in social networks. ADAC 5(2):129–145MathSciNetCrossRefzbMATHGoogle Scholar
  12. Batagelj V, Mrvar A, Zaversnik M (1999) Partitioning approach to visualization of large graphs. In: Proceedings of the international symposium on graph drawing, pp 90–97Google Scholar
  13. Boldi P, Vigna S (2004) The webgraph framework I: compression techniques. In: Proceedings of the international conference on World Wide Web (WWW), pp 595–602Google Scholar
  14. Bollobás B (1984) The evolution of random graphs. Trans Am Math Soc 286:257–274MathSciNetCrossRefzbMATHGoogle Scholar
  15. Bonchi F, Gionis A, Gullo F, Ukkonen A (2014a) Distance oracles in edge-labeled graphs. In: Proceedings of the international conference on extending database technology (EDBT), pp 547–558Google Scholar
  16. Bonchi F, Gullo F, Kaltenbrunner A, Volkovich Y (2014b) Core decomposition of uncertain graphs. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp 1316–1325Google Scholar
  17. Bonchi F, Gionis A, Gullo F, Tsourakakis CE, Ukkonen A (2015) Chromatic correlation clustering. ACM Trans Knowledge Discov Data 9(4):34Google Scholar
  18. Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E (2007) MEDUSA - new model of internet topology using k-shell decomposition. Proc Nat Acad Sci 104:11,150–11,154CrossRefGoogle Scholar
  19. Cheng J, Ke Y, Chu S, Ozsu MT (2011) Efficient core decomposition in massive networks. In: Proceedings of the IEEE international conference on data engineering (ICDE), pp 51–62Google Scholar
  20. Cheng Y, Lu C, Wang N (2013) Local k-core clustering for gene networks. In: Proceedings of the IEEE international conference on bioinformatics and biomedicine, pp 9–15Google Scholar
  21. Dasari NS, Ranjan D, Zubair M (2014) ParK: an efficient algorithm for k-core decomposition on multicore processors. In: Proceedings of the IEEE international conference on big data, pp 9–16Google Scholar
  22. Dorogovtsev SN, Goltsev AV, Mendes JFF (2006) k-Core organization of complex networks. Phys Rev Lett 96(4):040,601CrossRefzbMATHGoogle Scholar
  23. Eppstein D, Löffler M, Strash D (2010) Listing all maximal cliques in sparse graphs in near-optimal time. In: Proceedings of the international symposium on algorithms and computation (ISAAC), pp 403–414Google Scholar
  24. Gaertler M, Patrignani M (2004) Dynamic analysis of the autonomous system graph. In: Proceedings of the international work on inter-domain performance and simulation, pp 13–24Google Scholar
  25. Garcia D, Mavrodiev P, Schweitzer F (2013) Social resilience in online communities: the autopsy of friendster. In: Proceedings of ACM conference on online social networks (COSN), pp 39–50Google Scholar
  26. Giatsidis C, Thilikos DM, Vazirgiannis M (2011) D-cores: measuring collaboration of directed graphs based on degeneracy. In: Proceedings of IEEE international conference on data mining (ICDM), pp 201–210Google Scholar
  27. Giatsidis C, Malliaros FD, Thilikos DM, Vazirgiannis M (2014) CoreCluster: a degeneracy based graph clustering framework. In: Proceedings of AAAI conference on artificial intelligence, pp 44–50Google Scholar
  28. Goltsev AV, Dorogovtsev SN, Mendes JFF (2006) k-core (bootstrap) percolation on complex networks: critical phenomena and nonlocal effects. Physical Review E 73:056101MathSciNetCrossRefGoogle Scholar
  29. Healy J, Janssen J, Milios EE, Aiello W (2006) Characterization of graphs using degree cores. In: Proceedings of international work on algorithms and models for the Web-Graph (WAW), pp 137–148Google Scholar
  30. Khan A, Bonchi F, Gionis A, Gullo F (2014) Fast reliability search in uncertain graphs. In: Proceedings of international conference on extending database technology (EDBT), pp 535–546Google Scholar
  31. Khan A, Gullo F, Wohler T, Bonchi F (2015) Top-k reliable edge colors in uncertain graphs. In: Proceedings of the ACM international conference on information and knowledge management (CIKM), pp 1851–1854Google Scholar
  32. Khaouid W, Barsky M, Srinivasan V, Thomo A (2015) K-core decomposition of large networks on a single PC. Proc VLDB Endowment 9(1):13–23CrossRefGoogle Scholar
  33. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identifying influential spreaders in complex networks. Nat Phys 6(11):888–893CrossRefGoogle Scholar
  34. Kortsarz G, Peleg D (1994) Generating sparse 2-spanners. J Algorithms 17(2):222–236MathSciNetCrossRefzbMATHGoogle Scholar
  35. Kyrola A, Blelloch G, Guestrin C (2012) GraphChi: Large-scale graph computation on just a PC. In: Proceedings of the USENIX conference on operating systems design and implementation (OSDI), pp 31–46Google Scholar
  36. Lee VE, Ruan N, Jin R, Aggarwal C (2010) A survey of algorithms for dense subgraph discovery. In: Managing and mining graph data. Springer, New York, pp 303–336CrossRefGoogle Scholar
  37. Li R, Yu JX, Mao R (2014) Efficient core maintenance in large dynamic graphs. IEEE Trans Knowledge Data Eng 26(10):2453–2465CrossRefGoogle Scholar
  38. Luczak T (1991) Size and connectivity of the k-core of a random graph. Discret Math 91(1):61–68MathSciNetCrossRefzbMATHGoogle Scholar
  39. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 135–146Google Scholar
  40. Malliaros FD, Papadopoulos AN, Vazirgiannis M (2016) Core decomposition in graphs: concepts, algorithms and applications. In: Proceedings of international conference on extending database technology (EDBT), pp 720–721Google Scholar
  41. Montresor A, Pellegrini FD, Miorandi D (2013) Distributed k-core decomposition. IEEE Trans Parallel Distribut Syst 24(2):288–300CrossRefGoogle Scholar
  42. O’Brien MP, Sullivan BD (2014) Locally estimating core numbers. In: Proceedings of IEEE international conference on data mining (ICDM), pp 460–469Google Scholar
  43. Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Community detection in social media. Data Mining Knowledge Discov 24(3):515–554CrossRefGoogle Scholar
  44. Parchas P, Gullo F, Papadias D, Bonchi F (2015) Uncertain graph processing through representative instances. ACM Trans Database Syst 40(3):20MathSciNetCrossRefGoogle Scholar
  45. Pei S, Makse HA (2013) Spreading dynamics in complex networks. J Stat Mech Theory Exper 12Google Scholar
  46. Rossi MG, Malliaros FD, Vazirgiannis M (2015) Spread it good, spread it fast: Identification of influential nodes in social networks. In: Proceedings of the internatinal conference on World Wide Web - Companion Volume (WWW Companion), pp 101–102Google Scholar
  47. Ruchansky N, Bonchi F, García-Soriano D, Gullo F, Kourtellis N (2015) The minimum wiener connector problem. In: Proceedings of the ACM SIGMOD international conference on management of data, pp 1587–1602Google Scholar
  48. Saríyüce AE, Gedik B, Jacques-Silva G, Wu KL, Çatalyürek ÜV (2013) Streaming algorithms for k-core decomposition. Proc VLDB Endowment 6(6):433–444CrossRefGoogle Scholar
  49. Saríyüce AE, Gedik B, Jacques-Silva G, Wu KL, Çatalyürek ÜV (2016) Incremental k-core decomposition: algorithms and evaluation. VLDB J 25(3):425–447CrossRefGoogle Scholar
  50. Seidman SB (1983) Network structure and minimum degree. Soc Networks 5(3):269–287MathSciNetCrossRefGoogle Scholar
  51. Tsourakakis C, Bonchi F, Gionis A, Gullo F, Tsiarli M (2013) Denser than the densest subgraph: extracting optimal quasi-cliques with quality guarantees. In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining (KDD), pp 104–112Google Scholar
  52. Wen D, Qin L, Zhang Y, Lin X, Yu JX (2016) I/O efficient core graph decomposition at web scale. In: Proceedings of IEEE international conference on data engineering (ICDE)Google Scholar
  53. Wu H, Cheng J, Lu Y, Ke Y, Huang Y, Yan D, Wu H (2015) Core decomposition in large temporal graphs. In: Proceedings of IEEE internation conference on big data, pp 649–658Google Scholar
  54. Wuchty S, Almaas E (2005) Peeling the yeast protein network. Proteomics 5(2):444–449CrossRefGoogle Scholar
  55. Yan D, Cheng J, Lu Y, Ng W (2014) Blogel: a block-centric framework for distributed computation on real-world graphs. Proc VLDB Endowment 7(14):1981–1992CrossRefGoogle Scholar
  56. Zhang H, Zhao H, Cai W, Liu J, Zhou W (2010) Using the k-core decomposition to analyze the static structure of large-scale software systems. J Supercomput 53(2):352–369CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Francesco Bonchi
    • 1
  • Francesco Gullo
    • 2
  • Andreas Kaltenbrunner
    • 3
  1. 1.ISI FoundationTurinItaly
  2. 2.UniCredit, R&D DeptRomeItaly
  3. 3.EurecatBarcelonaSpain

Section editors and affiliations

  • Huan Liu
    • 1
  • Lei Tang
    • 2
  1. 1.Arizona State UniversityTempeUSA
  2. 2.Chief Data Scientist, Clari Inc.SunnyvaleUSA