Encyclopedia of Computational Neuroscience

2015 Edition
| Editors: Dieter Jaeger, Ranu Jung

Paraspinal Magnetic and Transcutaneous Electrical Stimulation

  • Ursula S. Hofstötter
  • Simon M. Danner
  • Karen Minassian
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6675-8_603

Synonyms

Definition

Paraspinal magnetic and electrical stimulation target deep neural structures within the vertebral canal and in between neighboring vertebrae from a distance of several centimeters, with either magnetic coils or skin electrodes. The principal mechanism of stimulation at the neuronal level is the same for magnetic and electrical stimulation and is given by the induced electric field component or, in an equivalent way, the electric potential, generated along the anatomical path of the nerve fibers. Yet the generation of...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We wish to acknowledge the support of the Vienna Science and Technology Fund (WWTF), Proj.Nr. LS11–057, and the Wings for Life Spinal Cord Research Foundation (WfL), Proj.Nr. WFL-AT-007/11. Special thanks are due to Frank Rattay for his insightful comments and to Martin Schmoll for his support in preparing the illustrations.

References

  1. Chokroverty S, Deutsch A, Guha C, Gonzalez A, Kwan P, Burger R, Goldberg J (1995) Thoracic spinal nerve and root conduction: a magnetic stimulation study. Muscle Nerve 18:987–991PubMedGoogle Scholar
  2. Cogiamanian F, Vergari M, Schiaffi E, Marceglia S, Ardolino G, Barbieri S, Priori A (2011) Transcutaneous spinal cord direct current stimulation inhibits the lower limb nociceptive flexion reflex in human beings. Pain 152:370–375PubMedGoogle Scholar
  3. Cohen D, Cuffin BN (1991) Developing a more focal magnetic stimulator, part I: some basic principles. J Clin Neurophysiol 8:102–111PubMedGoogle Scholar
  4. Danner SM, Hofstoetter US, Ladenbauer J, Rattay F, Minassian M (2011) Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study. Artif Organs 35:257–262PubMedCentralPubMedGoogle Scholar
  5. de Noordhout AM, Rothwell JC, Thompson PD, Day BL, Marsden CD (1988) Percutaneous electrical stimulation of lumbosacral roots in man. J Neurol Neurosurg Psychiatry 51:174–181Google Scholar
  6. Di Lazzaro V, Oliviero A (2005) Evaluation of myelopathy, radiculopathy, and thoracic nerve. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 105–127Google Scholar
  7. DiMarco AF (2005) Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol 147:273–287PubMedGoogle Scholar
  8. Dimitrijevic MM, Dimitrijevic MR, Illis LS, Nakajima K, Sharkey PC, Sherwood AM (1986) Spinal cord stimulation for the control of spasticity in patients with chronic spinal cord injury: I. Clinical observations. CNS Trauma 3:129–144Google Scholar
  9. Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360–376PubMedGoogle Scholar
  10. Dy CJ, Gerasimenko YP, Edgerton VR, Dyhre-Poulsen P, Courtine G, Harkema SJ (2010) Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury. J Neurophysiol 103:2808–2820PubMedCentralPubMedGoogle Scholar
  11. Epstein CM (2008) TMS stimulation coils. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 25–32Google Scholar
  12. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377:1938–1947PubMedCentralPubMedGoogle Scholar
  13. Herman R, He J, D’Luzansky S, Willis W, Dilli S (2002) Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord 40:65–68PubMedGoogle Scholar
  14. Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, Dimitrijevic MR (2008) Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs 2:644–648Google Scholar
  15. Hofstoetter US, Hofer C, Kern H, Danner SM, Mayr W, Dimitrijevic MR, Minassian K (2013a) Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomed Tech (Berl). doi:10.1515/bmt-2013-4014Google Scholar
  16. Hofstoetter US, McKay WB, Tansey KE, Mayr W, Kern H, Minassian K (2013b) Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J Spinal Cord Med 37(2):202–211. doi:10.1179/2045772313Y.0000000149PubMedGoogle Scholar
  17. Huang H, He J, Herman R, Carhart MR (2006) Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng 14:14–23PubMedGoogle Scholar
  18. Hubli M, Dietz V, Schrafl-Altermatt M, Bolliger M (2013) Modulation of spinal neuronal excitability by spinal direct currents and locomotion after spinal cord injury. Clin Neurophysiol 124:1187–1195PubMedGoogle Scholar
  19. Jilge B, Minassian K, Rattay F, Pinter MM, Gerstenbrand F, Binder H, Dimitrijevic MR (2004) Initiating extension of the lower limbs in subjects with complete spinal cord injury by epidural lumbar cord stimulation. Exp Brain Res 154:308–326PubMedGoogle Scholar
  20. Kitano K, Koceja DM (2009) Spinal reflex in human lower leg muscles evoked by transcutaneous spinal cord stimulation. J Neurosci Methods 180:111–115PubMedGoogle Scholar
  21. Krause P, Edrich T, Straube A (2004) Lumbar repetitive magnetic stimulation reduces spastic tone increase of the lower limbs. Spinal Cord 42:67–72PubMedGoogle Scholar
  22. Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F (2010) Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 18:637–645PubMedGoogle Scholar
  23. Lin V, Hsiao I (2005) Clinical applications of functional magnetic stimulation in patients with spinal cord injuries. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 393–410Google Scholar
  24. Maccabee PJ, Amassian VE, Eberle LP, Rudell AP, Cracco RQ, Lai KS, Somasundarum M (1991) Measurement of the electric field induced into inhomogeneous volume conductors by magnetic coils: application to human spinal neurogeometry. Electroencephalogr Clin Neurophysiol 81:224–237PubMedGoogle Scholar
  25. Maccabee PJ, Lipitz ME, Desudchit T, Golub RW, Nitti VW, Bania JP, Willer JA, Cracco RQ, Cadwell J, Hotson GC, Eberle LP, Amassian VE (1996) A new method using neuromagnetic stimulation to measure conduction time within the cauda equina. Electroencephalogr Clin Neurophysiol 101:153–166PubMedGoogle Scholar
  26. Maccabee PJ, Eberle LP, Stein IA, Willer JA, Lipitz ME, Kula RW, Marx T, Muntean EV, Amassian VE (2011) Upper leg conduction time distinguishes demyelinating neuropathies. Muscle Nerve 43:518–530PubMedGoogle Scholar
  27. Martin PG, Butler JE, Gandevia SC, Taylor JL (2008) Noninvasive stimulation of human corticospinal axons innervating leg muscles. J Neurophysiol 100:1080–1086PubMedGoogle Scholar
  28. Matsumoto H, Octaviana F, Hanajima R, Terao Y, Yugeta A, Hamada M, Inomata-Terada S, Nakatani-Enomoto S, Tsuji S, Ugawa Y (2009a) Magnetic lumbosacral motor root stimulation with a flat, large round coil. Clin Neurophysiol 120:770–775PubMedGoogle Scholar
  29. Matsumoto H, Octaviana F, Terao Y, Hanajima R, Yugeta A, Hamada M, Inomata-Terada S, Nakatani-Enomoto S, Tsuji S, Ugawa Y (2009b) Magnetic stimulation of the cauda equina in the spinal canal with a flat, large round coil. J Neurol Sci 284:46–51PubMedGoogle Scholar
  30. Mills KR, Murray NM (1986) Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol 63:582–589PubMedGoogle Scholar
  31. Mills KR, McLeod C, Sheffy J, Loh L (1993) The optimal current direction for excitation of human cervical motor roots with a double coil magnetic stimulator. Electroencephalogr Clin Neurophysiol 89:138–144PubMedGoogle Scholar
  32. Minassian K, Jilge B, Rattay F, Pinter MM, Binder H, Gerstenbrand F, Dimitrijevic MR (2004) Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord 42:401–416PubMedGoogle Scholar
  33. Minassian K, Persy I, Rattay F, Dimitrijevic MR, Hofer C, Kern H (2007) Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 35:327–336PubMedGoogle Scholar
  34. Minassian K, Hofstoetter US, Rattay F (2011) Transcutaneous lumbar posterior root stimulation for motor control studies and modification of motor activity after spinal cord injury. In: Dimitrijevic MR, Kakulas BA, McKay WB, Vrbova G (eds) Restorative neurology of spinal cord injury. Oxford University Press, New York, pp 226–255Google Scholar
  35. Minassian K, Hofstoetter U, Tansey K, Mayr W (2012) Neuromodulation of lower limb motor control in restorative neurology. Clin Neurol Neurosurg 114:489–497PubMedCentralPubMedGoogle Scholar
  36. Miranda PC (2005) Basic electromagnetism. In: Hallett M, Chokroverty S (eds) Magnetic stimulation in clinical neurophysiology, 2nd edn. Elsevier, Philadelphia, pp 1–15Google Scholar
  37. Nielsen JF, Sinkjaer T (1997) Long-lasting depression of soleus motoneurons excitability following repetitive magnetic stimuli of the spinal cord in multiple sclerosis patients. Mult Scler 3:18–30PubMedGoogle Scholar
  38. Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 38:524–531PubMedGoogle Scholar
  39. Rattay F (1999) The basic mechanisms for the electrical stimulation of the nervous system. Neuroscience 89:335–346PubMedGoogle Scholar
  40. Riehl M (2008) TMS stimulator design. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 13–23Google Scholar
  41. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, de Noordhout AM, Marsden CD, Murray NM, Rothwell JC, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92PubMedGoogle Scholar
  42. Roy FD, Gibson G, Stein RB (2012) Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots. Exp Brain Res 223:281–289PubMedGoogle Scholar
  43. Sandbrink F (2008) The MEP in clinical neurodiagnosis. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 237–283Google Scholar
  44. Sommer M (2008) TMS waveform and current direction. In: Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH (eds) The Oxford handbook of transcranial stimulation. Oxford University Press, New York, pp 7–12Google Scholar
  45. Szava Z, Danner SM, Minassian K (2011) Transcutaneous electrical spinal cord stimulation: biophysics of a new rehabilitation method after spinal cord injury. VDM Verlag Dr. Müller, SaarbrückenGoogle Scholar
  46. Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human corticospinal tract. J Appl Physiol 96:1496–1503PubMedGoogle Scholar
  47. Troni W, Bianco C, Coletti Moja M, Dotta M (1996) Improved methodology for lumbosacral nerve root stimulation. Muscle Nerve 19:595–604PubMedGoogle Scholar
  48. Troni W, Di Sapio A, Berra E, Duca S, Merola A, Sperli F, Bertolotto A (2011) A methodological reappraisal of non invasive high voltage electrical stimulation of lumbosacral nerve roots. Clin Neurophysiol 122:2071–2080PubMedGoogle Scholar
  49. Troni W, Benech CA, Perez R, Tealdi S, Berardino M, Benech F (2013) Non-invasive high voltage electrical stimulation as a monitoring tool of nerve root function in lumbosacral surgery. Clin Neurophysiol 124:809–818PubMedGoogle Scholar
  50. Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD (1989) Magnetic stimulation over the spinal enlargements. J Neurol Neurosurg Psychiatry 52:1025–1032PubMedCentralPubMedGoogle Scholar
  51. Xia Q, Wang S, Passias PG, Kozanek M, Li G, Grottkau BE, Wood KB, Li G (2009) In vivo range of motion of the lumbar spinous processes. Eur Spine J 18:1355–1362PubMedCentralPubMedGoogle Scholar
  52. Zidar J (2001) Are segmental conduction studies of the corticospinal tract in humans feasible? In: Proceedings of the international federation for medical & biological engineering. IFMBE Proceedings, Pula, pp 74–77Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ursula S. Hofstötter
    • 1
    • 2
  • Simon M. Danner
    • 1
    • 2
  • Karen Minassian
    • 1
    • 2
  1. 1.Center of Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
  2. 2.Institute of Analysis and Scientific ComputingVienna University of TechnologyViennaAustria