Encyclopedia of Computational Neuroscience

Editors: Dieter Jaeger, Ranu Jung

Retinotopic Development, Models of

DOI: https://doi.org/10.1007/978-1-4614-6675-8_406

Synonyms

Definition

Axons of neighboring retinal ganglion cells (RGCs) coming from the eye normally terminate in neighboring parts of target brain regions, such as the optic tectum of amphibians or the superior colliculus (SC) and lateral geniculate nucleus of mammals. This orderly arrangement of connections is termed a retinotopic map. Theoretical models of retinotopic map formation help us understand how these connections develop in early life and how maps might reform after surgical or experimental manipulations.

Detailed Description

What Is a Retinotopic Map?

A projection of connections is termed a topographic map when neighboring neurons in the source region project to neighboring regions in the target. Topographic maps are found in many sensory systems. Perhaps the most-studied topographic map is the projection from the retina to primary targets in the brain, which ensures...
This is a preview of subscription access content, login to check access

References

  1. Ackman JB, Burbridge TJ, Crair MC (2012) Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490(7419):219–225. doi:10.1038/nature11529PubMedCentralPubMedGoogle Scholar
  2. Cang J, Feldheim DA (2013) Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 36:51–77. doi:10.1146/annurev-neuro-062012-170341PubMedGoogle Scholar
  3. Drescher U, Bonhoeffer F, Muller B (1997) The Eph family in retinal axon guidance. Curr Opin Neurobiol 7(1):75–80. doi:10.1016/S0959-4388(97)80123-7PubMedGoogle Scholar
  4. Goodhill GJ (2007) Contributions of theoretical modeling to the understanding of neural map development. Neuron 56(2):301–311. doi:10.1016/j.neuron.2007.09.027PubMedGoogle Scholar
  5. Goodhill GJ, Xu J (2005) The development of retinotectal maps: a review of models based on molecular gradients. Network 16(1):5–34. doi:10.1080/09548980500254654PubMedGoogle Scholar
  6. Maffei L, Galli-Resta L (1990) Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci U S A 87(7):2861–2864. doi:10.1073/pnas.87.7.2861PubMedCentralPubMedGoogle Scholar
  7. Siegel F, Heimel JA, Peters J, Lohmann C (2012) Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol 22(3):253–258. doi:10.1016/j.cub.2011.12.026PubMedGoogle Scholar
  8. Sperry R (1963) Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc Natl Acad Sci U S A 50:703–710. doi:10.1073/pnas.50.4.703PubMedCentralPubMedGoogle Scholar
  9. Sterratt DC (2013) On the importance of countergradients for the development of retinotopy: insights from a generalised Gierer model. PLoS One 8(6):e67,096. doi:10.1371/journal.pone.0067096Google Scholar
  10. Sterratt DC, Hjorth JJJ (2013) Retinocollicular mapping explained? Vis Neurosci 30(4):125–128. doi:10.1017/S0952523813000254PubMedGoogle Scholar
  11. Swindale NV (1996) The development of topography in the visual cortex: a review of models. Netw Comput Neural Syst 7(2):161–247. doi:10.1088/0954-898x/7/2/002Google Scholar
  12. Triplett JW, Pfeiffenberger C, Yamada J, Stafford BK, Sweeney NT, Litke AM, Sher A, Koulakov AA, Feldheim DA (2011) Competition is a driving force in topographic mapping. Proc Natl Acad Sci U S A 108(47):19,060–19,065. doi:10.1073/pnas.1102834108Google Scholar
  13. van Ooyen A (2001) Competition in the development of nerve connections: a review of models. Netw Comput Neural Syst 12(1):R1–R47. doi:10.1080/713663154Google Scholar
  14. von der Malsburg C, Willshaw DJ (1977) How to label nerve cells so that they can interconnect in an ordered fashion. Proc Natl Acad Sci U S A 74(11):5176–5178. doi:10.1073/pnas.74.11.5176PubMedCentralPubMedGoogle Scholar
  15. Willshaw DJ, von der Malsburg C (1976) How patterned neural connections can be set up by self-organization. Proc R Soc Lond B Biol Sci 194(1117):431–445. doi:10.1098/rspb.1976.0087PubMedGoogle Scholar
  16. Wong ROL (1999) Retinal waves and visual system development. Annu Rev Neurosci 22:29–47. doi:10.1146/annurev.neuro.22.1.29PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Theoretical PhysicsCambridge Computational Biology Institute, University of CambridgeCambridgeUK