Molecular Life Sciences

Living Edition
| Editors: Robert D. Wells, Judith S. Bond, Judith Klinman, Bettie Sue Siler Masters, Ellis Bell

Recombination: Mechanisms, Pathways, and Applications

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6436-5_366-1

Synopsis

Recombination is a process that brings about reassortment of genetic information in and among chromosomes. Recombination serves several functions in organisms, including DNA repair in bacteria and eukaryotes, and ensures the correct alignment and segregation of chromosomes during meiosis in eukaryotes. Recombination is thought to be important for evolution since it provides new combinations of genes that may give rise to beneficial traits in an organism. Recombination enzymes and pathways are also used in some specialized cellular functions such as the diversification of genes that encode antibody proteins in vertebrates (V(D)J recombination) and telomere maintenance in tumor cells. Homologous recombination relies on complementary DNA sequences to transfer genetic information between identical and nearly identical (homologous) chromosomes. Genetic rearrangements can also occur through site-specific recombination and transposition reactions that are directed by protein-DNA...

Keywords

Hydrolysis Corn Recombination Oligomerization Ampicillin 
This is a preview of subscription content, log in to check access

References

  1. Adhya SL, Shapiro JA (1969) The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics 62:231–247PubMedPubMedCentralGoogle Scholar
  2. Amundsen SK, Taylor AF, Chaudhury AM, Smith GR (1986) recD: the gene for an essential third subunit of exonuclease V. Proc Natl Acad Sci U S A 83:5558–5562CrossRefPubMedPubMedCentralGoogle Scholar
  3. Babatz TD, Burns KH (2013) Functional impact of the human mobilome. Curr Opin Genet Dev 23:264–270CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barbour SD, Nagaishi H, Templin A, Clark AJ (1970) Biochemical and genetic studies of recombination proficiency in Escherichia coli. II. Rec+ revertants caused by indirect suppression of rec- mutations. Proc Natl Acad Sci U S A 67:128–135CrossRefPubMedPubMedCentralGoogle Scholar
  5. Batey MA, Zhao Y, Kyle S, Richardson C, Slade A, Martin NM, Lau A, Newell DR, Curtin NJ (2013) Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol Cancer Ther 12:959–967CrossRefPubMedPubMedCentralGoogle Scholar
  6. Berg P, Mertz JE (2010) Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184:9–17CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bishop DK, Park D, Xu L, Kleckner N (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456CrossRefPubMedGoogle Scholar
  8. Biswas T, Aihara H, Radman-Livaja M, Filman D, Landy A, Ellenberger T (2005) A structural basis for allosteric control of DNA recombination by lambda integrase. Nature 435:1059–1066CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boeke JD, Garfinkel DJ, Styles CA, Fink GR (1985) Ty elements transpose through an RNA intermediate. Cell 40:491–500CrossRefPubMedGoogle Scholar
  10. Calef E, Licciardello G (1960) Recombination experiments on prophage host relationships. Virology 12:81–103CrossRefGoogle Scholar
  11. Campbell A (1961) Episomes. Adv Genet 11:101–145Google Scholar
  12. Chang CJ, Bouhassira EE (2012) Zinc-finger nuclease-mediated correction of alpha-thalassemia in iPS cells. Blood 120:3906–3914CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chaudhury AM, Smith GR (1984) A new class of Escherichia coli recBC mutants: implications for the role of RecBC enzyme in homologous recombination. Proc Natl Acad Sci U S A 81:7850–7854CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453:489–484CrossRefPubMedGoogle Scholar
  15. Clark AJ (1973) Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet 7:67–86CrossRefPubMedGoogle Scholar
  16. Clark AJ, Margulies AD (1965) Isolation and characterization of recombination-deficient mutants of Escherichia Coli K12. Proc Natl Acad Sci U S A 53:451–459CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cohen SN (2013) DNA cloning: a personal view after 40 years. Proc Natl Acad Sci U S A 110:15521–15529CrossRefPubMedPubMedCentralGoogle Scholar
  18. Courcelle J, Ganesan AK, Hanawalt PC (2001) Therefore, what are recombination proteins there for? BioEssays 23:463–470CrossRefPubMedGoogle Scholar
  19. Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41–63CrossRefPubMedGoogle Scholar
  20. Cox MM, Goodman MF, Kreuzer KN, Sherratt DJ, Sandler SJ, Marians KJ (2000) The importance of repairing stalled replication forks. Nature 404:37–41CrossRefPubMedGoogle Scholar
  21. Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877CrossRefPubMedGoogle Scholar
  22. Dillingham MS, Kowalczykowski SC (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol Mol Biol Rev 72:642–671CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dupuy A, Valton J, Leduc S, Armier J, Galetto R, Gouble A, Lebuhotel C, Stary A, Paques F, Duchateau P et al (2013) Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN. PLoS One 8:e78678CrossRefPubMedPubMedCentralGoogle Scholar
  24. Evers B, Helleday T, Jonkers J (2010) Targeting homologous recombination repair defects in cancer. Trends Pharmacol Sci 31:372–380CrossRefPubMedGoogle Scholar
  25. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405CrossRefPubMedPubMedCentralGoogle Scholar
  26. Game JC, Zamb TJ, Braun RJ, Resnick M, Roth RM (1980) The role of radiation (rad) genes in meiotic recombination in yeast. Genetics 94:51–68PubMedPubMedCentralGoogle Scholar
  27. Ghosh K, Guo F, Van Duyne GD (2007) Synapsis of loxP sites by Cre recombinase. J Biol Chem 282:24004–24016CrossRefPubMedGoogle Scholar
  28. Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605CrossRefPubMedGoogle Scholar
  29. Hedges RW, Jacob AE (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol Gen Genet 132:31–40CrossRefPubMedGoogle Scholar
  30. Heller RC, Marians KJ (2006) Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7:932–943CrossRefPubMedGoogle Scholar
  31. Holliday R (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304CrossRefGoogle Scholar
  32. Holloman WK (2011) Unraveling the mechanism of BRCA2 in homologous recombination. Nat Struct Mol Biol 18:748–754CrossRefPubMedPubMedCentralGoogle Scholar
  33. Holloman WK, Wiegand R, Hoessli C, Radding CM (1975) Uptake of homologous single-stranded fragments by superhelical DNA: a possible mechanism for initiation of genetic recombination. Proc Natl Acad Sci U S A 72:2394–2398CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci U S A 69:2904–2909CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jasin M, Rothstein R (2013) Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5:a012740CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jekimovs C, Bolderson E, Suraweera A, Adams M, O'Byrne KJ, Richard DJ (2014) Chemotherapeutic compounds targeting the DNA double-strand break repair pathways: the good, the bad, and the promising. Front Oncol 4:86CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jones RN (2005) McClintock’s controlling elements: the full story. Cytogenet Genome Res 109:90–103CrossRefPubMedGoogle Scholar
  38. Keller EF (1983) A feeling for the organism. W. H. Freeman and Co., New YorkGoogle Scholar
  39. Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58:401–465PubMedPubMedCentralGoogle Scholar
  40. Lam ST, Stahl MM, McMilin KD, Stahl FW (1974) Rec-mediated recombinational hot spot activity in bacteriophage lambda. II A mutation which causes hot spot activity. Genetics 77:425–433PubMedPubMedCentralGoogle Scholar
  41. Lee AM, Xiao J, Singleton SF (2006) Origins of sequence selectivity in homologous genetic recombination: insights from rapid kinetic probing of RecA-mediated DNA strand exchange. J Mol Biol 360:343–359CrossRefPubMedGoogle Scholar
  42. Liu J, Ehmsen KT, Heyer WD, Morrical SW (2011) Presynaptic filament dynamics in homologous recombination and DNA repair. Crit Rev Biochem Mol Biol 46:240–270CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lwoff A (1953) Lysogeny. Bacteriol Rev 17:269–337PubMedPubMedCentralGoogle Scholar
  44. Maniatis T, Kee SG, Efstratiadis A, Kafatos FC (1976) Amplification and characterization of a beta-globin gene synthesized in vitro. Cell 8:163–182CrossRefPubMedGoogle Scholar
  45. Mazina OM, Rossi MJ, Deakyne JS, Huang F, Mazin AV (2012) Polarity and bypass of DNA heterology during branch migration of Holliday junctions by human RAD54, BLM, and RECQ1 proteins. J Biol Chem 287:11820–11832CrossRefPubMedPubMedCentralGoogle Scholar
  46. McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355CrossRefPubMedPubMedCentralGoogle Scholar
  47. McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47CrossRefPubMedGoogle Scholar
  48. McReynolds LA, Monahan JJ, Bendure DW, Woo SL, Paddock GV, Salser W, Dorson J, Moses RE, O'Malley BW (1977) The ovalbumin gene. Insertion of ovalbumin gene sequences in chimeric bacterial plasmids. J Biol Chem 252:1840–1843PubMedGoogle Scholar
  49. Meselson MS, Radding CM (1975) A general model for genetic recombination. Proc Natl Acad Sci U S A 72:358–361CrossRefPubMedPubMedCentralGoogle Scholar
  50. Michel B, Boubakri H, Baharoglu Z, LeMasson M, Lestini R (2007) Recombination proteins and rescue of arrested replication forks. DNA Repair (Amst) 6:967–980CrossRefGoogle Scholar
  51. Montano SP, Rice PA (2011) Moving DNA around: DNA transposition and retroviral integration. Curr Opin Struct Biol 21:370–378CrossRefPubMedPubMedCentralGoogle Scholar
  52. Morimatsu K, Wu Y, Kowalczykowski SC (2012) RecFOR proteins target RecA protein to a DNA gap with either DNA or RNA at the 5′ terminus: implication for repair of stalled replication forks. J Biol Chem 287:35621–35630CrossRefPubMedPubMedCentralGoogle Scholar
  53. Orr-Weaver TL, Szostak JW (1985) Fungal recombination. Microbiol Rev 49:33–58PubMedPubMedCentralGoogle Scholar
  54. Parsons CA, Stasiak A, Bennett RJ, West SC (1995) Structure of a multisubunit complex that promotes DNA branch migration. Nature 374:375–378CrossRefPubMedGoogle Scholar
  55. Ponticelli AS, Schultz DW, Taylor AF, Smith GR (1985) Chi-dependent DNA strand cleavage by RecBC enzyme. Cell 41:145–151CrossRefPubMedGoogle Scholar
  56. Potter H, Dressler D (1976) On the mechanism of genetic recombination: electron microscopic observation of recombination intermediates. Proc Natl Acad Sci U S A 73:3000–3004CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ragunathan K, Joo C, Ha T (2011) Real-time observation of strand exchange reaction with high spatiotemporal resolution. Structure 19:1064–1073CrossRefPubMedPubMedCentralGoogle Scholar
  58. Rosen EM, Pishvaian MJ (2014) Targeting the BRCA1/2 tumor suppressors. Curr Drug Targets 15:17–31CrossRefPubMedGoogle Scholar
  59. Saedler H, Starlinger P (1967) 0 degree mutations in the galactose operon in E. coli. I. Genetic characterization. Mol Gen Genet 100:178–189CrossRefPubMedGoogle Scholar
  60. Sakai A, Cox MM (2009) RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem 284:3264–3272CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sauer B (1998) Inducible gene targeting in mice using the Cre/lox system. Methods 14:381–392CrossRefPubMedGoogle Scholar
  62. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658CrossRefPubMedGoogle Scholar
  63. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223CrossRefPubMedPubMedCentralGoogle Scholar
  64. Shibata T, DasGupta C, Cunningham RP, Radding CM (1979) Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc Natl Acad Sci U S A 76:1638–1642CrossRefPubMedPubMedCentralGoogle Scholar
  65. Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470CrossRefPubMedGoogle Scholar
  66. Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89CrossRefPubMedGoogle Scholar
  67. Singleton MR, Dillingham MS, Gaudier M, Kowalczykowski SC, Wigley DB (2004) Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks. Nature 432:187–193CrossRefPubMedGoogle Scholar
  68. Smith GR (2012) How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist’s view. Microbiol Mol Biol Rev 76:217–228CrossRefPubMedPubMedCentralGoogle Scholar
  69. Stahl FW (1979) Genetic recombination. Thinking about it in phage and fungi. W. H. Freeman and Co., San FranciscoGoogle Scholar
  70. Starlinger P (1977) DNA rearrangements in prokaryotes. Annu Rev Genet 11:103–126CrossRefPubMedGoogle Scholar
  71. Story RM, Steitz TA (1992) Structure of the recA protein-ADP complex. Nature 355:374–376CrossRefPubMedGoogle Scholar
  72. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW (1983) The double-strand-break repair model for recombination. Cell 33:25–35CrossRefPubMedGoogle Scholar
  73. Taylor AL (1963) Bacteriophage-induced mutation in Escherichia Coli. Proc Natl Acad Sci U S A 50:1043–1051CrossRefPubMedPubMedCentralGoogle Scholar
  74. Temin HM (1980) Origin of retroviruses from cellular moveable genetic elements. Cell 21:599–600CrossRefPubMedGoogle Scholar
  75. Walhout AJ, Temple GF, Brasch MA, Hartley JL, Lorson MA, van den Heuvel S, Vidal M (2000) GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol 328:575–592CrossRefPubMedGoogle Scholar
  76. Wigley DB (2013) Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11:9–13CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA