Skip to main content

Networks Associated with Reward

  • Living reference work entry
  • First Online:

Abstract

This chapter describes brain networks related to reward processing. We will first consider the reward regions identified by decades of preclinical and more recently human research and the circuits that connect them. These will include the classical “reward centers” along with various cortical and subcortical structures that contribute to reward learning and reward-based decision-making. The second section explores how these nodes, identified and described primarily in nonhuman mammals, are identified in humans through the use of noninvasive imaging techniques like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET). We next discuss reward processing from a network-level perspective, including the methods by which structural and functional connectivity can be identified in humans with MRI-based tools. The final section will discuss functional connectivity networks that center on reward-related circuitry, as well as networks that serve many behavioral purposes but are affected by reward. Dysregulation of these reward networks circuitry in neuropsychiatric disorders will be explored using addiction as an exemplar.

This is a preview of subscription content, log in via an institution.

References

  • Cole DM, Beckmann CF, Long CJ, Matthews PM, Durcan MJ, Beaver JD (2010) Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage 52(2):590–599

    Article  CAS  PubMed  Google Scholar 

  • Craig AD (2011) Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci 1225(1):72–82

    Article  PubMed  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    Article  CAS  PubMed  Google Scholar 

  • Falck B, Hillarp NA (1959) On the cellular localization of catechol amines in the brain. Acta Anatomica 38:277–279

    Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Essen DCV, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, Yang Y (2010) Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage 53(2):593–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35(1):4–26

    Article  PubMed  Google Scholar 

  • Hong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, … Stein EA (2009) Nicotine addiction and nicotine’s actions are associated with separate cingulate cortex functional circuits. Arch Gen Psychiatry 66(4):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Salmeron B, Gu H, Stein EA, Yang Y (2015) IMpaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry 72(6):584–592

    Article  PubMed  Google Scholar 

  • Janes AC, Nickerson LD, Frederick B dB, Kaufman MJ (2012) Prefrontal and limbic resting state brain network functional connectivity differs between nicotine-dependent smokers and non-smoking controls. Drug Alcohol Depend 125(3):252–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman JN, Ross TJ, Stein EA, Garavan H (2003) Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. J Neurosci 23(21):7839–7843

    CAS  PubMed  Google Scholar 

  • Knutson B, Gibbs SEB (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology 191(3):813–822

    Article  CAS  PubMed  Google Scholar 

  • Knutson B, Greer SM (2008) Anticipatory affect: neural correlates and consequences for choice. Philos Trans R Soc Lond B Biol Sci 363(1511):3771–3786

    Article  PubMed  PubMed Central  Google Scholar 

  • Knutson B, Adams CM, Fong GW, Hommer D (2001) Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci 21(16):RC159

    CAS  PubMed  Google Scholar 

  • Knutson B, Taylor J, Kaufman M, Peterson R, Glover G (2005) Distributed neural representation of expected value. J Neurosci 25(19):4806–4812

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Moal ML (1997) Drug abuse: hedonic homeostatic dysregulation. Science 278(5335):52–58. 8.5335.52

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  PubMed  Google Scholar 

  • Lerman C, Gu H, Loughead J, Ruparel K, Yang Y, Stein EA (2014) Large-scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry 71(5):523–530

    Article  PubMed  PubMed Central  Google Scholar 

  • McClure SM (2004) Separate neural systems value immediate and delayed monetary rewards. Science 306(5695):503–507

    Article  CAS  PubMed  Google Scholar 

  • Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15(10):483–506

    Article  PubMed  Google Scholar 

  • O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337

    Article  PubMed  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6):419

    Article  CAS  PubMed  Google Scholar 

  • Sutherland MT, McHugh MJ, Pariyadath V, Stein EA (2012) Resting state functional connectivity in addiction: lessons learned and a road ahead. Neuroimage 62(4):2281–2295

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Hong LE, Stein EA (2013) Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers. Biol Psychiatry 74(7):538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkow ND, Fowler JS, Wang G-J (2002) Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 13(5–6):355–366

    Article  CAS  PubMed  Google Scholar 

  • Wallis JD (2007) Orbitofrontal cortex and its contribution to decision-making. Annu Rev Neurosci 30(1):31–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIDA Intramural Research Program. The authors would like to thank Drs. V. Pariyadath, J.R. Fedota and J.L. Gowin for stimulating discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elise Lesage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York (outside the USA)

About this entry

Cite this entry

Lesage, E., Stein, E.A. (2016). Networks Associated with Reward. In: Pfaff, D., Volkow, N. (eds) Neuroscience in the 21st Century. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6434-1_134-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6434-1_134-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6434-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics