Skip to main content

Dietary Manipulation to Mitigate Greenhouse Gas Emission from Livestock

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

The emission of greenhouse gases from livestock due to the fermentation process in the gastrointestinal tract is a colossal burden for veterinarians worldwide. These detrimental greenhouse gases are considered not only environmental pollutants but also toxic to human health. Livestock is considered a significant contributor to climate change by releasing these biogases into the ecosystem. In recent years, research has been focused on alteration of rumen microflora and fermentation kinetics of livestock for enhancing feed consumption and reducing the emission of toxic biogases. A plethora of supplements are being added into the feed of livestock for reducing the emission of greenhouse gases into the ecosystem. In this chapter, we have summarized the promising roles of probiotics, exogenous enzymes, plant metabolites and fodder trees, organic acids, and other microbes as ideal dietary feed additives for the sustainable mitigation of greenhouse gases release from ruminant and non-ruminant animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adegbeye MJ, Ravi Kanth Reddy P, Obaisi AI, et al (2020) Sustainable agriculture options for production, greenhouse gasses and pollution alleviation, and nutrient recycling in emerging and transitional nations – an overview. J Clean Prod 242:118319

    Article  Google Scholar 

  • Ahmed J, Almeida E, Aminetzah D, et al (2020) Agriculture and climate change. Reducing emissions through improved farming practices, McKinsey and Company, pp 1–45

    Google Scholar 

  • Allen MR, Shine KP, Fuglestvedt JS et al (2018) A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. NPJ Clim Atmos Sci 1:16

    Article  Google Scholar 

  • Alshaikh N, Perveen K (2017) Anti-candidal activity and chemical composition of essential oil of clove (Syzygiumaromaticum). J Essen Oil Bear Plants 20(4):951–958

    Article  Google Scholar 

  • Anderson RC, Huwe JK, Smith DJ et al (2010) Effect of nitroethane, dimethyl-2-nitroglutarate and 2-nitro-methyl-propionate on ruminal methane production and hydrogen balance in vitro. Bioresour Technol 101:5345–5349

    Article  Google Scholar 

  • Arokiyaraj S, Stalin A, Shin H (2019) Anti-methanogenic effect of rhubarb (Rheum spp.) – an in silico docking studies on methyl-coenzyme M reductase (MCR). Saudi J Biol Sci 26:1458–1462

    Article  Google Scholar 

  • Arriola KG, Kim SC, Staples CR et al (2011) Effect of fibrolytic enzyme application to low-and high-concentrate diets on the performance of lactating dairy cattle. J Dairy Sci 94:832–841

    Article  Google Scholar 

  • Asanuma N, Iwamoto M, Hino T (1999) Effect of the addition of fumarate on methane production by ruminal microorganisms in vitro. J Dairy Sci 82:780–787

    Article  Google Scholar 

  • Ashmawy NA, Farraj DA, Salem MZM et al (2020) Potential impact of Pinus halepensis Miller trees as a source of phytochemical compounds: antibacterial activity of the cones essential oil and n-butanol extract. Agrofor Syst 94:1403–1413

    Article  Google Scholar 

  • Baruah L, Malik PK, Kolte AP et al (2018) Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Vet World 11:809–818

    Article  Google Scholar 

  • Bayat AR, Tapio I, Vilkki J et al (2018) Plant oil supplements reduce methane emissions and improve milk fatty acid composition in dairy cows fed grass silage-based diets without affecting milk yield. J Dairy Sci 101:1136–1151

    Article  Google Scholar 

  • Beauchemin K, McGinn S (2006) Methane emission from beef cattle: effects of fumaric acid, essential oil and canola oil. J Anim Sci 84:1489–1496

    Article  Google Scholar 

  • Beauchemin KA, Colombatto D, Morgavi DP et al (2003) Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. J Anim Sci 81:E37–E47

    Google Scholar 

  • Beauchemin KA, Kreuzer M, O’Mara F et al (2008) Nutritional management for enteric methane abatement: a review. Aust J Exp Agric 48:21–27

    Article  Google Scholar 

  • Benchaar C (2020) Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. J Dairy Sci 103(2):1516–1527

    Article  Google Scholar 

  • Benchaar C, Greathead H (2011) Essential oils and opportunities to mitigate enteric methane emissions from ruminants. Anim Feed Sci Technol 166:338–355

    Article  Google Scholar 

  • Benchaar C, Pomar C, Chiquette J (2001) Evaluation of dietary strategies to reduce methane production in ruminants: a modelling approach. Can J Anim Sci 81:563–574

    Article  Google Scholar 

  • Besharati M, Moaddab V, Nemati Z et al (2020) Influence of cinnamon essential oil and monensin on the ruminal biogas kinetic of waste pomegranate seeds as a biofriendly agriculture environment. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-020-01167-2

  • Biswas AA, Lee SS, Mamuad LL et al (2016) Use of lysozyme as a feed additive on in vitro rumen fermentation and methane emission. Asian Aust J Anim Sci 29:1601–1607

    Article  Google Scholar 

  • Bodas R, Prieto N, García-González R et al (2012) Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 176:78–93

    Article  Google Scholar 

  • Božik M, Nový P, Klouček P (2017) Chemical composition and antimicrobial activity of cinnamon, thyme, oregano and clove essential oils against plant pathogenic bacteria. Acta Univ Agric Silvic Mendelianae Brun 65(4):129–1134

    Article  Google Scholar 

  • Broudiscou LP, Papon Y, Broudiscou AF (2002) Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. Anim Feed Sci Technol 101:183–189

    Article  Google Scholar 

  • Burt S (2004) Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol 94:223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

    Article  Google Scholar 

  • Cain M (2018) Guest post: a new way to assess “global warming potential” of shortlived pollutants. [Internet]. CarbonBrief, London; c2018. Accessed 5 Dec 2019. Available from: https://www.carbonbrief.org/guestpost-a-new-way-to-assess-global-warming-potential-of-short-livedpollutants

    Google Scholar 

  • Caputo L, Souza LF, Alloisio S et al (2016) Coriandrum sativum and Lavandula angustifolia essential oils: chemical composition and activity on central nervous system. Int J Mol Sci 17(12):1999

    Article  Google Scholar 

  • Castillejos L, Calsamiglia S, Ferret A (2006) Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. J Dairy Sci 89:2649–2658

    Article  Google Scholar 

  • Castillo C, Benedito JL, Mendez J et al (2004) Organic acids as a substitute for monensin in diets for beef cattle. Anim Feed Sci Technol 115:101–116

    Article  Google Scholar 

  • Chahbi A, Nassik S, El Amri H et al (2020) Chemical composition and antimicrobial activity of the essential oils of two aromatic plants cultivated in Morocco (Cinnamomum cassia and Origanum compactum). J Chem 10. Article ID 1628710. https://doi.org/10.1155/2020/1628710

  • Cobellis G, Trabalza-Marinucci M, Marcotullio MC (2016) Evaluation of different essential oils in modulating methane and ammonia production, rumen fermentation, and rumen bacteria in vitro. Anim Feed Sci Technol 215:25–36

    Article  Google Scholar 

  • Daly K, Stewart CS, Flint HJ et al (2001) Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol Ecol 38:141–151

    Article  Google Scholar 

  • Dohme F, Machmuller A, Estermann BL et al (1999) The role of the rumen ciliate protozoa for methane suppression caused by coconut oil. Lett Appl Microbiol 29:187–192

    Article  Google Scholar 

  • Dong Y, Bae HD, McAllister TA et al (1997) Lipid induced depression of methane production and digestibility in the artificial rumen system. Can J Anim Sci 77:269–278

    Article  Google Scholar 

  • Dziri S, Casabianca H, Hanchi B et al (2014) Composition of garlic essential oil (Allium sativum L.) as influenced by drying method. J Essent Oil Res 26(2):91–96

    Article  Google Scholar 

  • Edwards JE, Huws SA, Kim EJ et al (2008) Advances in microbial ecosystem concepts and their consequences for ruminant agriculture. Animals 2:653–660

    Google Scholar 

  • Elghandour MMY, Kholif AE, Bastida AZ et al (2015) In vitro gas production of five rations of different maize silage and concentrate ratios influenced by increasing levels of chemically characterized extract of Salix babylonica. Turk J Vet Anim Sci 39:186–194

    Article  Google Scholar 

  • Elghandour MMY, Kholif AE, Salem AZM et al (2016a) Addressing sustainable ruminal methane and carbon dioxide emissions of soybean hulls by organic acid salts. J Clean Prod 135:194–200

    Article  Google Scholar 

  • Elghandour MMY, Kholif AE, Salem AZM et al (2016b) Sustainable anaerobic rumen methane and carbon dioxide productions from prickly pear cactus flour by organic acid salts addition. J Clean Prod 139:1362–1369

    Article  Google Scholar 

  • Elghandour MMY, Kholif AE, López S et al (2016c) In vitro gas, methane, and carbon dioxide productions of high fibrous diet incubated with fecal inocula from horses in response to the supplementation with different live yeast additives. J Equine Vet Sci 38:64–71

    Article  Google Scholar 

  • Elghandour MMY, Kholif AE, Hernandez A et al (2017a) Effects of organic acid salts on ruminal biogas production and fermentation kinetics of total mixed rations with different maize silage to concentrate ratios. J Clean Prod 147:523–530

    Article  Google Scholar 

  • Elghandour MMY, Vázquez JC, Salem AZM et al (2017b) In vitro gas and methane production of two mixed rations influenced by three different cultures of Saccharomyces cerevisiae. J Appl Anim Res 45:385–395

    Article  Google Scholar 

  • Elghandour MMY, Salem AZM, Khusro A et al (2017c) Assessment of some browse tree leaves on gas production and sustainable mitigation of CH4 and CO2 emissions in dairy calves at different age. J Clean Prod 162:1192–1199

    Article  Google Scholar 

  • Elghandour MMY, Vallejo LH, Salem AZM et al (2017d) Effects of Schizochytrium microalgae and sunflower oil as sources of unsaturated fatty acids for the sustainable mitigation of ruminal biogases methane and carbon dioxide. J Clean Prod 168:1389–1397

    Article  Google Scholar 

  • Elghandour MMY, Vallejo LH, Salem AZM et al (2017e) Moringa oleifera leaf meal as an environmental friendly protein source for ruminants: biomethane and carbon dioxide production, and fermentation characteristics. J Clean Prod 165:1229–1238

    Article  Google Scholar 

  • Elghandour MMY, Khusro A, Greiner R et al (2018a) Horse fecal methane and carbon dioxide production and fermentation kinetics influenced by Lactobacillus farciminis-supplemented diet. J Equine Vet Sci 62:98–101

    Article  Google Scholar 

  • Elghandour MMY, Rodríguez-Ocampo I, Parra-Garcia A et al (2018b) Biogas production from prickly pear cactus containing diets supplemented with Moringa oleifera leaf extract for a cleaner environmental livestock production. J Clean Prod 185:547–553

    Article  Google Scholar 

  • Elghandour MMMY, Khusro A, Salem AZM et al (2018c) Role of dose dependent Escherichia coli as ruminal anti-microflora agent to mitigate biogases production in prickly pear cactus flour based diet. Microb Pathog 115:208–215

    Article  Google Scholar 

  • Elghandour MMMY, Antolin-Cera X, Salem AZM et al (2018d) Influence of Escherichia coli inclusion and soybean hulls based diets on ruminal biomethane and carbon dioxide productions in sheep. J Clean Prod 192:766–774

    Article  Google Scholar 

  • Elghandour MM, Salem MZM, Greiner R et al (2018e) Effect of natural blends of garlic and eucalyptus essential oils on biogas production of four fibrous feed at short term incubation in the ruminal anaerobic biosystem. J Sci Food Agric 98:5313–5321

    Article  Google Scholar 

  • Ellefson WL, Wolfe RS (1981) Component C of the Methyl reductase system of Methanobacterium. J Biol Chem 256:4259–4262

    Article  Google Scholar 

  • Enjalbert F, Combes S, Zened A et al (2017) Rumen microbiota and dietary fat: a mutual shaping. J Appl Microbiol 123:782–797

    Article  Google Scholar 

  • EPA (2006) Global mitigation of non-CO2 gases. Environmental Protection Agency (EPA), Washington, DC

    Google Scholar 

  • EPA (2011) Greenhouse gas emissions and sinks. Environmental Protection Agency (EPA), Washington, DC

    Google Scholar 

  • Ermler U, Grabarse W, Shima S et al (1997) Crystal structure of Methyl–coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–1462

    Article  Google Scholar 

  • Eun JS, Beauchemin KA (2007) Assessment of the efficacy of varying experimental exogenous fibrolytic enzymes using in vitro fermentation characteristics. Anim Feed Sci Technol 132:298–315

    Article  Google Scholar 

  • European Union (2020) Study on Future of EU livestock: how to contribute to a sustainable agricultural sector? Final report. Publications Office of the European Union, Luxembourg, pp 1–82. https://doi.org/10.2762/3440

    Book  Google Scholar 

  • Evans JD, Martin SA (2000) Effects of thymol on ruminal microorganisms. Curr Microbiol 41:336–340

    Article  Google Scholar 

  • Faniyi TO, Adegbeye MJ, Elghandour MMY et al (2019) Role of diverse fermentative factors towards microbial community shift in ruminants. J Appl Microbiol 127:2–11

    Article  Google Scholar 

  • FAO (2006) Livestock’s long shadow. Environmental issues and options food and agriculture organization of the United Nations, Rome, Italy

    Google Scholar 

  • FAO (2016) FAO’s work on climate change GHG emission. Greenhouse Gas Emissions from Agriculture, Forestry and Other Land Use. www.fao.org/climate-change

  • FAO (2017) Global Livestock Environmental Assessment Model (GLEAM). FAO, Rome. 109pp. www.fao.org/gleam/en/

    Google Scholar 

  • FAO (2020) Reducing Enteric Methane for improving food security and livelihoods. http://www.fao.org/in-action/enteric-methane/background/what-is-enteric-methane/en/

  • Food and Agriculture Organization of the United Nation (2016) FAOSTAT. http://www.fao.org/faostat/en/#compare. Accessed Jan 2021

  • Food and Agriculture Organization of the United Nation (2018) FAOSTAT. http://www.fao.org/faostat/en/#compare. Accessed Jan 2021

  • Frank S, Havlík P, Stehfest E et al (2019) Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat Clim Chang 9:66–72

    Article  Google Scholar 

  • Gaglio R, Barbera M, Aleo A et al (2017) Inhibitory activity and chemical characterization of Daucus carota subsp. maximus essential oils. Chem Biodivers 14(5):e1600477

    Article  Google Scholar 

  • García EDA, Khusro A, Pacheco EBF et al (2019) Influence of dietary supplementation of ensiled devil fish and Staphylococcus saprophyticus on equine fecal greenhouse gases production. J Equine Vet Sci 79:105–112

    Article  Google Scholar 

  • Garcia F, Vercoe PE, Martínez MJ et al (2019) Essential oils from Lippia turbinata and Tagetes minuta persistently reduce in vitro ruminal methane production in a continuous-culture system. Anim Prod Sci 59(4):709–720

    Article  Google Scholar 

  • Garcia F, Colombatto D, Brunetti MA et al (2020) The reduction of methane production in the in vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals 10(5):786

    Article  Google Scholar 

  • Gedikoğlu A, Sökmen M, Çivit A (2019) Evaluation of Thymus vulgaris and Thymbra spicata essential oils and plant extracts for chemical composition, antioxidant, and antimicrobial properties. Food Sci Nutr 7(5):1704–1714

    Article  Google Scholar 

  • Gemeda BS, Hassen A (2015) Effect of tannin and species variation on in vitro digestibility, gas, and methane production of tropical browse plants. Asian Aust J Anim Sci 28:188–199

    Article  Google Scholar 

  • Gerber PJ, Steinfeld H, Henderson B et al (2013) Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Giannenas I, Skoufos J, Giannakopoulos C et al (2011) Effects of essential oils on milk production, milk composition, and rumen microbiota in Chios dairy ewes. J Dairy Sci 94:5569–5577

    Article  Google Scholar 

  • Gladine C, Rock E, Morand C et al (2007) Bioavailability and antioxidant capacity of plant extracts rich in polyphenols, given as a single acute dose, in sheep made highly susceptible to lipoperoxidation. Br J Nutr 98:691–701

    Article  Google Scholar 

  • Goel G, Makkar HP (2012) Methane mitigation from ruminants using tannins and saponins. Trop Anim Health Prod 44:729–739

    Article  Google Scholar 

  • Gong YL, Liao XD, Liang JB et al (2013) Saccharomyces cerevisiae live cells decreased in vitro methane production in intestinal content of pigs. Asian Aust J Anim Sci 26:856–863

    Article  Google Scholar 

  • Haisan J, Sun Y, Guan LL et al (2014) The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J Dairy Sci 97:3110–3119

    Article  Google Scholar 

  • Hart KJ, Yanez-Ruiz DR, Duval SM et al (2008) Plant extracts to manipulate rumen fermentation. Anim Feed Sci Technol 147:8–35

    Article  Google Scholar 

  • Hassan F, Arshad MA, Ebeid HM et al (2020) Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet- microbe interaction. Front Vet Sci 7:575801

    Article  Google Scholar 

  • Hernandez A, Kholif AE, Elghandour MMMY et al (2017a) Effectiveness of xylanase and Saccharomyces cerevisiae as feed additives on gas emissions from agricultural calf farms. J Clean Prod 148:616–623

    Article  Google Scholar 

  • Hernandez A, Kholif AE, Lugo-Coyote R et al (2017b) The effect of garlic oil, xylanase enzyme and yeast on biomethane and carbon dioxide production from 60-d old Holstein dairy calves fed a high concentrate diet. J Clean Prod 142:2384–2392

    Article  Google Scholar 

  • Hristov AN, Lee C, Cassidy T et al (2013) Effect of Origanum vulgare L. leaves on rumen fermentation, production, and milk fatty acid composition in lactating dairy cows. J Dairy Sci 96(2):1189–1202

    Article  Google Scholar 

  • Ijaz M, Goheer MA (2020) Emission profile of Pakistan’s agriculture: past trends and future projections. Environ Dev Sustain. https://doi.org/10.1007/s10668-020-00645-w

  • Imane NI, Fouzia H, Azzahra LF et al (2020) Chemical composition, antibacterial and antioxidant activities of some essential oils against multidrug resistant bacteria. Eur J Integr Med 35:101074

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change [Core Writing Team, Pachauri RK, Reisinger A (eds)]. IPCC, Geneva, Switzerland, 52 pp. Available at: www.ipcc.ch

  • IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer et al (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Jahani-Azizabadi H, Danesh Mesgaran M, Vakili AR et al (2009) Screening the activity of medicinal plants or spices on in vitro ruminal methane production. J Dairy Sci 92:277–278

    Google Scholar 

  • Jahani-Azizabadi H, Danesh Mesgaran M, Vakili A et al (2011) Effect of various medicinal plant essential oils obtained from semi-arid climate on rumen fermentation characteristics of a high forage diet using in vitro batch culture. Afr J Microbiol Res 5(27):4812–4819

    Google Scholar 

  • Jayanegara A, Sarwono KA, Kondo M et al (2018) Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: a meta-analysis. Ital J Anim Sci 17:650–656

    Article  Google Scholar 

  • Joch M, Cermak L, Hakl J et al (2016) In vitro screening of essential oil active compounds for manipulation of rumen fermentation and methane mitigation. Asian Aust J Anim Sci 29:952. https://doi.org/10.5713/ajas.15.0474

    Article  Google Scholar 

  • Joch M, Kudrna V, Hakl J et al (2019) In vitro and in vivo potential of a blend of essential oil compounds to improve rumen fermentation and performance of dairy cows. Anim Feed Sci Technol 251:176–186

    Article  Google Scholar 

  • Kalleli F, BettaiebRebey I, Wannes WA et al (2019) Chemical composition and antioxidant potential of essential oil and methanol extract from Tunisian and French fennel (Foeniculum vulgare Mill.) seeds. J Food Biochem 43(8):e12935

    Article  Google Scholar 

  • Kassahun A, Feleke G (2019) Chemical composition and physico-chemical analysis of Eucalyptus Globulus leave and oil. Sci J Chem 7(2):36

    Article  Google Scholar 

  • Kholif AE, Gouda GA, Morsy TA et al (2015) Moringa oleifera leaf meal as a protein source in lactating goat’s diets: feed intake, digestibility, ruminal fermentation, milk yield and composition, and its fatty acids profile. Small Rumin Res 129:129–137

    Article  Google Scholar 

  • Kholif AE, Baza-García LA, Elghandour MMY et al (2016) In vitro assessment of fecal inocula from horses fed on high-fiber diets with fibrolytic enzymes addition on gas, methane, and carbon dioxide productions as indicators of hindgut activity. J Equine Vet Sci 39:44–50

    Article  Google Scholar 

  • Khusro A, Aarti C, Salem AZM et al (2020) Methyl-coenzyme M reductase (MCR) receptor as potential drug target for inhibiting methanogenesis in horses using Moringa oleifera L.: an in silico docking study. J Equine Vet Sci 88:102949. https://doi.org/10.1016/j.jevs.2020.102949

    Article  Google Scholar 

  • Kim ET, Kim CH, Min KS et al (2012) Effects of plant extracts on microbial population, methane emission and ruminal fermentation characteristics in in vitro. Asian Australas J Anim Sci 25:806–811

    Article  Google Scholar 

  • Kim H, Jung E, Lee HG et al (2019) Essential oil mixture on rumen fermentation and microbial community – an in vitro study. Asian Australas J Anim Sci 32(6):808–814

    Article  Google Scholar 

  • Koike S, Kobayashi Y (2009) Fibrolytic rumen bacteria: their ecology and functions. Asian Australas J Anim Sci 22:131–138

    Article  Google Scholar 

  • Kolver ES, Aspin PW, Jarvis GN et al (2004) Fumarate reduces methane production from pasture fermented in continuous culture. In: Proceedings of the New Zealand society of animal production: New Zealand Society of Animal Production 64:155–159

    Google Scholar 

  • Kongmuna P, Wanapat M, Pakdeea P et al (2011) Manipulation of rumen fermentation and ecology of swamp buffalo by coconut oil and garlic powder supplementation. Livest Sci 135:84–92

    Article  Google Scholar 

  • Latham EA, Pinchak WE, Trachsel J et al (2018) Isolation, characterization and strain selection of a Paenibacillus species for use as a probiotic to aid in ruminal methane mitigation, nitrate/nitrite detoxification and food safety. Bioresour Technol 263:358–364

    Article  Google Scholar 

  • Lee JG, Chae Y, Shin Y et al (2020) Chemical composition and antioxidant capacity of black pepper pericarp. Appl Biol Chem 63:35. https://doi.org/10.1186/s13765-020-00521-1

    Article  Google Scholar 

  • Lejonklev J, Kidmose U, Jensen S et al (2016) Effect of oregano and caraway essential oils on the production and flavor of cow milk. J Dairy Sci 99:7898–7903

    Article  Google Scholar 

  • Lila ZA, Mohammed N, Takahashi T et al (2006) Increase of ruminal fiber digestion by cellobiose and a twin strain of Saccharomyces cerevisiae live cells in vitro. Anim Sci J 77:407–413

    Article  Google Scholar 

  • Lillis L, Boots B, Kenny DA et al (2011) The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J Appl Microbiol 111:1426–1435

    Article  Google Scholar 

  • Lin B, Lu Y, Salem AZM et al (2013) Effect of essential oil combination on sheep ruminal fermentation and digestibility of a diet with fumarate included. Anim Feed Sci Technol 184:24–32

    Article  Google Scholar 

  • Lopez S, McIntosh E, Wallace RJ et al (1999) Effect of adding acetogenic bacteria on methane production by mixed rumen microorganisms. Anim Feed Sci Technol 78:1–9

    Article  Google Scholar 

  • Lynch H, Martin S (2002) Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J Dairy Sci 85:2603–2608

    Article  Google Scholar 

  • Machmüller AD, Ossowski A, Wanner M et al (1998) Potential of various fatty feeds to reduce methane release from rumen fermentation in vitro. Anim Feed Sci Technol 71:117–130

    Article  Google Scholar 

  • Manh NS, Wanapat M, Uriyapongson S et al (1997) Effect of eucalyptus (Camaldulensis) leaf meal powder on rumen fermentation characteristics in cattle fed on rice straw. Afr J Agric Res 7:1997–2003

    Google Scholar 

  • Martin SA, Streeter MN (1995) Effect of malate on in vitro mixed ruminal microorganism fermentation. J Anim Sci 73:2141–2145

    Article  Google Scholar 

  • Maurya AK, Devi R, Kumar A et al (2018) Chemical composition, cytotoxic and antibacterial activities of essential oils of cultivated clones of Juniperus communis and wild Juniperus species. Chem Biodivers 15(9):e1800183

    Article  Google Scholar 

  • McAllister TA, Newbold CJ (2008) Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric 48:7–13

    Article  Google Scholar 

  • McAllister TA, Beauchemin KA, Alazzeh AY et al (2011) Review: the use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can J Anim Sci 91:193–211

    Article  Google Scholar 

  • McGinn SM, Beauchemin KA, Coates T et al (2004) Methane emissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J Anim Sci 82:3346–3356

    Article  Google Scholar 

  • McIntosh F, Williams P, Losa R et al (2003) Effects of essential oils on ruminal microorganisms and their protein metabolism. Appl Environ Microbiol 69(8):5011–5014

    Article  Google Scholar 

  • Meale SJ, Chaves AV, Baah J (2012) Methane production of different forages in In vitro ruminal fermentation. Asian Aust J Anim Sci 25:86–91

    Article  Google Scholar 

  • Morshedloo MR, Mumivand H, Craker LE et al (2018) Chemical composition and antioxidant activity of essential oils in Origanum vulgare subsp. gracile at different phenological stages and plant parts. J Food Process Preserv 42(2):e13516

    Article  Google Scholar 

  • Mosier AR, Duxbury JM, Freney JR et al (1998) Mitigating agricultural emissions of methane. Clim Chang 40:39–80

    Article  Google Scholar 

  • Moss AR, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253

    Article  Google Scholar 

  • Mwenya B, Santoso B, Sar C et al (2004) Effects of including β1–4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim Feed Sci Technol 115:313–326

    Article  Google Scholar 

  • Newbold CJ, el Hassan SM, Wang J et al (1997) Influence of foliage from african multipurpose trees on activity of rumen protozoa and bacteria. Br J Nutr 78:237–249

    Article  Google Scholar 

  • Newbold CJ, Lopez S, Nelson N et al (2005) Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr 94:27–35

    Article  Google Scholar 

  • Newbold CJ, de la Fuente G, Belanche A et al (2015) The role of ciliate protozoa in the rumen. Front Microbiol 6:1313

    Article  Google Scholar 

  • Odongo NE, Garcia M, Viljoen GJ (2010) Sustainable improvement of animal production and health. Food and Agriculture Organization of the United Nations, Rome, pp 151–157

    Google Scholar 

  • Olijhoek DW, Hellwing ALF, Grevsen K et al (2019) Effect of dried oregano (Origanum vulgare L.) plant material in feed on methane production, rumen fermentation, nutrient digestibility, and milk fatty acid composition in dairy cows. J Dairy Sci 102(11):9902–9918

    Article  Google Scholar 

  • Opio C, Gerber P, Mottet A et al (2013) Greenhouse gas emissions from ruminant supply chains – a global life cycle assessment. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Ornaghi MG, Guerrero A, Vital ACP et al (2020) Improvements in the quality of meat from beef cattle fed natural additives. Meat Sci 163:108059

    Article  Google Scholar 

  • Öz E, Koç S, Çinbilgel İ et al (2018) Chemical composition and larvicidal activity of essential oils from Nepeta cadmea Boiss. and Pimpinella anisum L. on the larvae of Culex pipiens L. Marmara Pharm J 22(2):322–327

    Google Scholar 

  • Patra AK (2011) Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J Anim Vet Adv 6:416–428

    Article  Google Scholar 

  • Patra AK, Saxena J (2009) The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr Res Rev 22:204–219

    Article  Google Scholar 

  • Patra AK, Yu Z (2015) Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (Rumen-BactArray) analysis. Front Microbiol 6:297. https://doi.org/10.3389/fmicb.2015.00297

    Article  Google Scholar 

  • Patra AK, Kamra DN, Agrawal N (2006) Effect of plant extracts on in vitro methanogenesis enzyme activities and fermentation of feed in the rumen liquor of buffalo. Anim Feed Sci Technol 128:276–291

    Article  Google Scholar 

  • Pedraza-Hernandez J, Elghandour MMMY, Khusro A et al (2019) Mitigation of ruminal biogases production from goats using Moringa oleifera extract and live yeast culture for a cleaner agriculture environment. J Clean Prod 234:779–786

    Article  Google Scholar 

  • Raiten DJ, Allen LH, Slavin JL et al (2020) Understanding the intersection of climate/environmental change, health, agriculture, and improved nutrition: A case study on micronutrient nutrition and animal source foods. Curr Dev Nutr 4:nzaa087

    Google Scholar 

  • Ramirez-Restrepo CA, Barry TN (2005) Alternative temperate forages containing secondary compounds for improving sustainable productivity in grazing ruminants. Anim Feed Sci Technol 120:179–201

    Article  Google Scholar 

  • Reddy PRK, Elghandour MM, Salem AZM et al (2020) Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Anim Feed Sci Technol 264:114469

    Article  Google Scholar 

  • Romero-Perez A, Okine EK, McGinn SM et al (2014) The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. J Anim Sci 92:4682–4693

    Article  Google Scholar 

  • Romero-Perez A, Okine EK, McGinn SM et al (2015) Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet. J Anim Sci 93:1780–1791

    Article  Google Scholar 

  • Ruiz O, Castillo Y, Arzola C et al (2016) Effects of Candida norvegensis live cells on in vitro oat straw rumen fermentation. Asian Aust J Anim Sci 29:211–218

    Article  Google Scholar 

  • Salem AZM, Kholif AE, Elghandour MM (2014) Effect of increasing levels of seven tree species extracts added to a high concentrate diet on in vitro rumen gas output. Anim Sci J 85:853–860

    Article  Google Scholar 

  • Salem AZM, Elghandour MMY, Chagoyán JCV et al (2015) The effect of live yeast (Saccharomyces cerevisiae) on in-vitro total gas, methane and carbon dioxide production of diet containing 50% oat straw in horses. J Fisheries Livest Prod 3:64–71

    Google Scholar 

  • Sallam SMA, Bueno ICS, Brigide P et al (2009) Efficacy of eucalyptus oil on in vitro rumen fermentation and methane production. Options Méditérr 85:267–272

    Google Scholar 

  • Schären M, Drong C, Kiri K et al (2017) Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. J Dairy Sci 100:2765–2783

    Article  Google Scholar 

  • Silva LR, Azevedo J, Pereira MJ et al (2013) Chemical assessment and antioxidant capacity of pepper (Capsicum annuum L.) seeds. Food Chem Toxicol 53:240–248

    Article  Google Scholar 

  • Singh S, Das SS, Singh G et al (2017) Comparative studies of chemical composition, antioxidant and antimicrobial potentials of essential oils and oleoresins obtained from seeds and leaves of Anethum graveolens L. Toxicol Open Access 3(119):2–9

    Google Scholar 

  • Singhal K, Anamika K, Singh B (2007) Effect of saponins of plant extracts on rumen fermentation and methane emission. In: Proceedings of International animal Nutrition Conference, National Dairy Research Institute, Karnal 2, 297

    Google Scholar 

  • Smith-Palmer A, Stewart J, Fyfe L (1998) Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Lett Appl Microbiol 26:118–122

    Article  Google Scholar 

  • Solomon S, Qin D, Manning M (2007) Technical summary. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K, MMB T, Miller HL, Chen ZL (eds) Climate change 2007. The physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK/New York, pp 19–91

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T et al (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Tahir HU, Sarfraz RA, Ashraf A et al (2016) Chemical composition and antidiabetic activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum). Int J Food Prop 19(10):2156–2164

    Article  Google Scholar 

  • Takahashi J, Miyagawa T, Kojima Y et al (2000) Effects of Yucca schidigera extract, probiotics, monensin and L-cysteine on rumen methanogenesis. Asian Aust J Anim Sci 13:499–501

    Google Scholar 

  • Tang SX, Tayo GO, Tan ZL et al (2008) Effects of yeast culture and fibrolytic enzyme supplementation on in vitro fermentation characteristics of low-quality cereal straws. J Anim Sci 86:1164–1172

    Article  Google Scholar 

  • Tekippe JA, Hristov AN, Heyler KS et al (2011) Rumen fermentation and production effects of Origanum vulgare L. in lactating dairy cows. J Dairy Sci 94:5065–5079

    Article  Google Scholar 

  • Tekippe JA, Hristov AN, Heyler KS et al (2012) Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation. Can J Anim Sci 92:395–408

    Article  Google Scholar 

  • Tekippe JA, Tacoma R, Hristov AN et al (2013) Effect of essential oils on ruminal fermentation and lactation performance of dairy cows. J Dairy Sci 96:7892–7903

    Article  Google Scholar 

  • Tsukahara T, Azuma Y, Ushida K (2001) The effect of a mixture of live lactic acid bacteria on intestinal gas production in pigs. Microb Ecol Health Dis 13:105–110

    Article  Google Scholar 

  • Vargas JE, Andrés S, López-Ferreras L et al (2020) Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Sci Rep 10:1613. https://doi.org/10.1038/s41598-020-58401-z

    Article  Google Scholar 

  • Velázquez AE, Kholif AE, Elghandour MMY et al (2016) Effect of partial replacement of steam rolled corn with soybean hulls or prickly pear cactus in the horse’s diet in the presence of live Saccharomyces cerevisiae on in vitro fecal gas production. J Equine Vet Sci 42:94–101

    Article  Google Scholar 

  • Velázquez AE, Salem AZM, Khusro A et al (2020) Sustainable mitigation of fecal greenhouse gases emission from equine using safflower and fish oils in combination with live yeast culture as additives towards a cleaner ecosystem. J Clean Prod 256:120460. https://doi.org/10.1016/j.jclepro.2020.120460

    Article  Google Scholar 

  • Vyas D, McGinn SM, Duval S et al (2016) Optimal dose of 3-nitrooxypropanol for decreasing enteric methane emissions from beef cattle fed high-forage and high-grain diets. Anim Prod Sci 58:1049–1055

    Article  Google Scholar 

  • Wongnate T, Ragsdale SW (2015) The reaction mechanism of Methyl-coenzyme M reductase. J Biol Chem 290:9322–9334

    Article  Google Scholar 

  • World Resource Institute (2018) Creating a sustainable food future: synthesis report. https://www.wri.org/our-work/project/world-resources-report/publications

  • Wu J, Guo J, Liu T et al (2020) Feeding a calf starter containing monensin alone or in combination with an oregano, prebiotics, and cobalt blend to Holstein calves. J Anim Sci 98. https://doi.org/10.1093/jas/skaa214

  • Yang WZ, Benchaar C, Ametaj BN et al (2007) Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J Dairy Sci 90:5671–5681

    Article  Google Scholar 

  • Ye D, Karnati SKR, Wagner B et al (2018) Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture. J Dairy Sci 101:5069–5081

    Article  Google Scholar 

  • Zhao J, Dong Z, Li J et al (2019) Evaluation of Lactobacillus plantarum MTD1 and waste molasses as fermentation modifier to increase silage quality and reduce ruminal greenhouse gas emissions of rice straw. Sci Total Environ 688:143–152

    Article  Google Scholar 

  • Zhou R, Wu J, Zhang L et al (2019) Effects of oregano essential oil on the ruminal pH and microbial population of sheep. PLoS One 14(5):e0217054

    Article  Google Scholar 

  • Zhou R, Wu J, Lang X et al (2020) Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci 103:2303–2314. https://doi.org/10.3168/jds.2019-16611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. M. Salem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khusro, A. et al. (2021). Dietary Manipulation to Mitigate Greenhouse Gas Emission from Livestock. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_131-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_131-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6431-0

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Dietary Manipulation to Mitigate Greenhouse Gas Emission from Livestock
    Published:
    24 July 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_131-2

  2. Original

    Dietary Manipulation to Mitigate Greenhouse Gas Emission from Livestock
    Published:
    12 April 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_131-1