Skip to main content

Path-Based and Whole-Network Measures

  • Reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining
  • 287 Accesses

Synonyms

Centrality measures; Structural and locational properties

Glossary

Betweenness Centrality :

A measure of the proportion of shortest paths in a network passing through a specific node or edge

Closeness Centrality :

A measure of how close a node is to all the other nodes of a network

Clustering Coefficient :

A measure of how much nodes tend to form groups in a network

Diameter :

The maximum distance between two nodes

Direct Connection :

An edge between two nodes, usually indicating the existence of a specific relationship, e.g., a friendship between two individuals

Dyad :

A group of two people

Geodesic Distance (or Distance) :

Length of one of the shortest paths between two nodes

Indirect Connection :

A path between two nodes that are not directly connected through an edge

Node :

An entity in a network, usually representing an individual

Path :

A sequence of edges sharing common endpoints, e.g., an edge between n i and n j followed by an edge between n j and n...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthonisse JM (1971) The rush in a directed graph. Technical report BN 9/71, Stichting Mathematisch Centrum, Amsterdam

    Google Scholar 

  • Becchetti L, Boldi P, Castillo C, Gionis A (2008) Efficient semi-streaming algorithms for local triangle counting in massive graphs. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’08. ACM, New York, pp 16–24. doi: 10.1145/1401890.1401898

    Google Scholar 

  • Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177. doi: 10.1080/0022250X.2001.9990249

    MATH  Google Scholar 

  • Brandes U, Pich C (2007) Centrality estimation in large networks. Int J Bifurc Chaos 17(07):2303–2318. doi:10.1142/S0218127407018403

    MATH  MathSciNet  Google Scholar 

  • Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. MIT, Cambridge

    MATH  Google Scholar 

  • Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56(1):167–242. doi: 10.1080/00018730601170527

    Google Scholar 

  • Festa P (2006) Shortest path algorithms. In: Resende MGC, Pardalos PM (eds) Handbook of optimization in telecommunications. Springer, New York, pp 185–210. doi:10.1007/978–0-387–30165-5_8

    Google Scholar 

  • Floyd RW (1962) Algorithm 97: shortest path. Commun ACM 5(6):345. doi:10.1145/367766.368168

    Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–5):75–174. doi:10.1016/ j.physrep.2009.11.002

    MathSciNet  Google Scholar 

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40(1):35–41

    Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239. doi:10.1016/0378–8733(78)90021–7

    MathSciNet  Google Scholar 

  • Gephi (2012) Gephi, an open source graph visualization and manipulation software. http://www.gephi.org/, version 0.8.1-beta, released on 29 Mar 2012

  • Goncalves B, Perra N, Vespignani A (2011) Modeling users’ activity on twitter networks: validation of Dunbar’s number. PLoS ONE 6(8):e22656. doi: 10.1371/journal.pone.0022656

    Google Scholar 

  • Guha S, McGregor A (2012) Graph synopses, sketches, and streams: a survey. PVLDB 5(12):2030–2031

    Google Scholar 

  • Harary F (1969) Graph theory. Addison-Wesley, Reading, MA

    Google Scholar 

  • Harary F, Norman RZ (1953) Graph theory as a mathematical model in the social sciences. Institute for Social Research, University of Michigan, Ann Arbor

    Google Scholar 

  • IGraph (2012) The igraph library for complex network research. http://igraph.sourceforge.net/, version 0.6, released on 11 June 2012

  • Johnson DB (1977) Efficient algorithms for shortest paths in sparse networks. J ACM 24(1): 1–13. doi: 10.1145/321992.321993

    MATH  Google Scholar 

  • Lambertini M, Magnani M, Marzolla M, Montesi D, Paolino C (2014) Large scale social network analysis. Large-scale data analytics. Springer, New York

    Google Scholar 

  • Latapy M (2008) Main-memory triangle computations for very large (sparse (power-law)) graphs. Theor Comput Sci 407(1–3):458–473. doi:10.1016/j.tcs.2008.07.017

    MATH  MathSciNet  Google Scholar 

  • Latora V, Marchiori M (2001) Efficient behavior of small- world networks. Phys Rev Lett 87(19): 198701

    Google Scholar 

  • Luce R, Perry A (1949) A method of matrix analysis of group structure. Psychometrika 14:95–116. doi:10.1007/BF02289146

    MathSciNet  Google Scholar 

  • Lumsdaine A, Gregor D, Hendrickson B, Berry JW (2007) Challenges in parallel graph processing. Parallel Process Lett 17(1):5–20

    MathSciNet  Google Scholar 

  • Newman MEJ (2005) A measure of betweenness centrality based on random walks. Soc Netw (27):39–54

    Google Scholar 

  • Newman MEJ (2010) Networks: an introduction. Oxford University Press, Oxford

    Google Scholar 

  • NodeXL (2012) Nodexl, a graph visualization and manipulation software. http://nodexl.codeplex.com, version 1.0.1.219

  • Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc Netw 31(2): 155—163. doi:10.1016/j.socnet.2009.02.002

    Google Scholar 

  • Opsahl T, Agneessens F, Skvoretz J (2010) Node centrality in weighted networks: generalizing degree and shortest paths. Soc Netw 32(3):245–251. doi:10.1016/j.socnet.2010.03.006

    Google Scholar 

  • Peay ER (1980) Connectedness in a general model for valued networks. Soc Netw 2(4):385–410. doi: 10.1016/0378–8733(80)90005–2

    MathSciNet  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. ISBN 3–900051-07–0

  • Rossi L, Magnani M (2012) Conversation practices and network structure in twitter. In: ICWSM, Dublin

    Google Scholar 

  • Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603. doi:10.1007/BF02289527

    MATH  MathSciNet  Google Scholar 

  • SNAP (2011) Stanford network analysis project network analysis library. http://snap.stanford.edu/snap, version 2011–12-31

  • Wasserman S, Faust K (1994) Social network analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442. doi:10.1038/30918

    Google Scholar 

  • White DR, Borgatti SP (1994) Betweenness centrality measures for directed graphs. Soc Netw 16(4): 335–346

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Magnani, M., Marzolla, M. (2014). Path-Based and Whole-Network Measures. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6170-8_241

Download citation

Publish with us

Policies and ethics