Encyclopedia of Social Network Analysis and Mining

2014 Edition
| Editors: Reda Alhajj, Jon Rokne

Ranking Methods for Networks

  • Yizhou Sun
  • Jiawei Han
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6170-8_161

Synonyms

Glossary

Ranking

Sort objects according to some order

Global Ranking

Objects are assigned ranks globally

Query-Dependent Ranking

Objects are assigned with different ranks according to different queries

Proximity Ranking

Objects are ranked according to proximity or similarity to other objects

Homogeneous Information Network

Networks that contain one type of objects and one type of relationships

Heterogeneous Information Network

networks that contain more than one type of objects and/or one type of relationships

Learning to Rank

ranking is learned according to examples via supervised or semi-supervised methods

Definition

Ranking objects in a network may refer to sorting the objects according to importance, popularity, influence, authority, relevance, similarity, and proximity, by utilizing link information in the network.

Introduction

In this entry, we introduce the ranking methods...

This is a preview of subscription content, log in to check access.

References

  1. Agarwal A, Chakrabarti S, Aggarwal S (2006) Learning to rank networked entities. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’06, pp 14–23. doi: 10.1145/1150402.1150409, http://doi.acm.org/10.1145/1150402.1150409
  2. Balmin A, Hristidis V, Papakonstantinou Y (2004) Objectrank: authority-based keyword search in databases. In: Proceedings of the thirtieth international conference on very large data bases – volume 30, VLDB Endowment, VLDB ’04, pp 564–575Google Scholar
  3. Beauchamp MA (1965) An improved index of centrality. Behav Sci 10:161–163Google Scholar
  4. Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw 30(1–7):107–117Google Scholar
  5. Chen L, Li X, Han J (2013) Medrank: discovering influential medical treatments from literature by information network analysis. In: Proceeding of the 2013 Australasian database conference, ADC ’13, AdelaideGoogle Scholar
  6. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41Google Scholar
  7. Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239. doi:10.1016/0378-8733(78)90021-7MathSciNetGoogle Scholar
  8. Gao B, Liu TY, Wei W, Wang T, Li H (2011) Semi-supervised ranking on very large graphs with rich metadata. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’11, pp 96–104. doi:10.1145/2020408.2020430, http://doi.acm.org/10.1145/2020408.2020430
  9. Gyöngyi Z, Garcia-Molina H, Pedersen J (2004) Combating web spam with trustrank. In: Proceedings of the thirtieth international conference on very large data bases – volume 30, VLDB endowment, VLDB ’04, pp 576–587. http://dl.acm.org/citation.cfm?id=1316689.1316740
  10. Haveliwala TH (2002) Topic-sensitive pagerank. In: Proceedings of the 11th international conference on world wide web, WWW ’02, pp 517–526Google Scholar
  11. Jeh G, Widom J (2002) Simrank: a measure of structural-context similarity. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’02, pp 538–543. doi:10.1145/775047.775126, http://doi.acm.org/10.1145/775047.775126
  12. Jeh G, Widom J (2003) Scaling personalized web search. In: Proceedings of the 12th international conference on world wide web, WWW ’03, New York, pp 271–279. doi:10.1145/775152.775191Google Scholar
  13. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1):39–43zbMATHGoogle Scholar
  14. Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604–632zbMATHMathSciNetGoogle Scholar
  15. Li C, Han J, He G, Jin X, Sun Y, Yu Y, Wu T (2010a) Fast computation of simrank for static and dynamic information networks. In: Proceedings of the 13th international conference on extending database technology, EDBT ’10, pp 465–476. doi:10.1145/1739041.1739098, http://doi.acm.org/10.1145/1739041.1739098
  16. Li P, Liu H, Xu J, Jun Y, Du HX (2010b) Fast single-pair simrank computation. In: In Proceedings of the SIAM international conference on data mining, SDM ’10Google Scholar
  17. Nie Z, Zhang Y, Wen JR, Ma WY (2005) Object-level ranking: bringing order to web objects. In: Proceedings of the 14th international conference on world wide web, WWW ’05, pp 567–574. doi: 10.1145/1060745.1060828Google Scholar
  18. Nieminen J (1974) On the centrality in a graph. Scand J Psychol 15(1):332–336Google Scholar
  19. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31:581–603zbMATHMathSciNetGoogle Scholar
  20. Shi C, Kong X, Yu PS, Xie S, Wu B (2012) Relevance search in heterogeneous networks. In: Proceedings of the 15th international conference on extending database technology, EDBT ’12, pp 180–191. doi:10.1145/2247596.2247618, http://doi.acm.org/10.1145/2247596.2247618
  21. Sun Y, Han J, Zhao P, Yin Z, Cheng H, Wu T (2009a) Rankclus: integrating clustering with ranking for heterogeneous information network analysis. In: Proceedings of the 12th international conference on extending database technology (EDBT ’09), pp 565–576Google Scholar
  22. Sun Y, Yu Y, Han J (2009b) Ranking-based clustering of heterogeneous information networks with star network schema. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’09, pp 797–806Google Scholar
  23. Sun Y, Han J, Yan X, Yu PS, Wu T (2011) Pathsim: meta path-based top-k similarity search in heterogeneous information networks. In: Proceeding of 2011 international conference on very large data bases, VLDB ’11Google Scholar
  24. Tsoi AC, Morini G, Scarselli F, Hagenbuchner M, Maggini M (2003) Adaptive ranking of web pages. In: Proceedings of the 12th international conference on world wide web, WWW ’03, pp 356–365. doi:10.1145/775152.775203, http://doi.acm.org/10.1145/775152.775203
  25. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  26. Yu X, Sun Y, Norick B, Mao T, Han J (2012) User guided entity similarity search using meta-path selection in heterogeneous information networks. In: Proceedings of the 21st ACM international conference on information and knowledge management, CIKM ’12, pp 2025–2029. doi:10.1145/2396761.2398565Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Yizhou Sun
    • 1
  • Jiawei Han
    • 2
  1. 1.College of Computer and Information Science, Northeastern UniversityBostonUSA
  2. 2.Department of Computer Science, University of Illinois at Urbana-ChampaignUrbanaUSA