Skip to main content

Glutamate as a Neurotoxin

  • Reference work entry
  • First Online:

Abstract

Glutamate (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system (CNS). Excessive glutamate in the extracellular space can trigger passive and active forms of neuronal death in the CNS via excessive activation of glutamate receptors. This phenomenon has been named excitotoxicity. Excitotoxicity has been implicated in the pathogenesis of acute and chronic neurodegenerative disorders. However, despite overwhelming preclinical data, human clinical trials in stroke or traumatic brain injury with antiexcitotoxic compounds acting at different levels of the excitotoxic cascade have failed to provide the expected neuroprotective effect. Here we present a focused overview of excitotoxic research including physiology of glutamate receptors and intracellular pathways leading to cell death. We review evidence for involvement of excitotoxicity in human neurodegenerative disorders and the results of several clinical trials. We present the most recent trends in the development of antiexcitotoxic therapies and also briefly refer to the hypothesis that interference with the trophic actions of glutamate in the context of CNS injuries may be one of the reasons why clinical trials with antiexcitotoxic compounds have failed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., Gurd, J. W., Wang, Y. T., Salter, M. W., & Tymianski, M. (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science, 298, 846–850.

    CAS  PubMed  Google Scholar 

  • Abe, T., Sugihara, H., Nawa, H., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. The Journal of Biological Chemistry, 267, 13361–13368.

    CAS  PubMed  Google Scholar 

  • Adler, C. H., Stern, M. B., Vernon, G., & Hurtig, H. I. (1997). Amantadine in advanced Parkinson’s disease: Good use of an old drug. Journal of Neurology, 244, 336–337.

    CAS  PubMed  Google Scholar 

  • Albers, G. W., Goldstein, L. B., Hall, D., Lesko, L. M., & Aptiganel Acute Stroke Investigators. (2001). Aptiganel hydrochloride in acute ischemic stroke: A randomized controlled trial. Journal of the American Medical Association, 286, 2673–2682.

    CAS  PubMed  Google Scholar 

  • Andersen, P. M. (2001). Genetics of sporadic ALS. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2, S37–S41.

    CAS  PubMed  Google Scholar 

  • Andersen, P. M., Moritam, M., & Brown, R. H., Jr. (2001). Nucleotide sequence, genomic organization, and chromosomal localization of genes encoding the human NMDA receptor subunits NR3A and NR3B. Genomics, 78, 178–184.

    Google Scholar 

  • Areosa, S. A., Sherriff, F., & McShane, R. (2005). Memantine for dementia. Cochrane Database Syst Rev, 2, CD003154.

    Google Scholar 

  • Arias, C., Arrieta, I., & Tapia, R. (1995). beta-Amyloid peptide fragment 25-35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. Journal of Neuroscience Research, 41, 561–566.

    CAS  PubMed  Google Scholar 

  • Baker, A. J., Moulton, R. J., MacMillan, V. H., & Shedden, P. M. (1993). Excitatory amino acids in cerebrospinal fluid following traumatic brain injury in humans. Journal of Neurosurgery, 79, 369–372.

    CAS  PubMed  Google Scholar 

  • Bath, P. M., Iddenden, R., Bath, F. J., Orgogozo, J. M., & Tirilazad International Steering Committee. (2001). Tirilazad for acute ischaemic stroke. Cochrane Database Syst Rev, 4, CD002087.

    Google Scholar 

  • Beal, M. F. (1992a). Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Annals of Neurology, 31, 119–130.

    CAS  PubMed  Google Scholar 

  • Beal, M. F. (1992b). Role of excitotoxicity in human neurological disease. Current Opinion in Neurology, 2, 657–662.

    CAS  Google Scholar 

  • Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Swartz, K. J., & Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid. Nature, 321, 168–171.

    CAS  PubMed  Google Scholar 

  • Beal, M. F., Ferrante, R. J., Swartz, K. J., & Kowall, N. W. (1991). Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease. The Journal of Neuroscience, 11, 1649–1659.

    CAS  PubMed  Google Scholar 

  • Beal, M. F., Brouillet, E., Jenkins, B., Henshaw, R., Rosen, B., & Hyman, B. T. (1993a). Age-dependent striatal excitotoxic lesions produced by the endogenous mitochondrial inhibitor malonate. Journal of Neurochemistry, 61, 1147–1150.

    CAS  PubMed  Google Scholar 

  • Beal, M. F., Brouillet, E., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Miller, J. M., Storey, E., Srivastava, R., Rosen, B. R., & Hyman, B. T. (1993b). Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. The Journal of Neuroscience, 13, 4181–4192.

    CAS  PubMed  Google Scholar 

  • Bensimon, G., Lacomblez, L., Meininger, V., & The ALS/Riluzole Study Group. (1994). A controlled trial of riluzole in amyotrophic lateral sclerosis. The New England Journal of Medicine, 330, 585–591.

    CAS  PubMed  Google Scholar 

  • Benveniste, M., & Mayer, M. L. (1993). Multiple effects of spermine on N-methyl-d-aspartic acid receptor responses of rat cultured hippocampal neurones. The Journal of Physiology, 464, 131–163.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. Journal of Neurological Sciences, 20, 415–455.

    CAS  Google Scholar 

  • Block, F., & Schwarz, M. (1996). Memantine reduces functional and morphological consequences induced by global ischemia in rats. Neuroscience Letters, 208(1), 41–44.

    CAS  PubMed  Google Scholar 

  • Blum, D., Torch, S., Lambeng, N., Nissou, M., Benabid, A. L., Sadoul, R., & Verna, J. M. (2001). Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease. Progress in Neurobiology, 65, 135–172.

    CAS  PubMed  Google Scholar 

  • Boast, C. A., Gerhardt, S. C., Pastor, G., Lehmann, J., Etienne, P. E., & Liebman, J. M. (1988). The N-methyl-d-aspartate antagonists CGS 19755 and CPP reduce ischemic brain damage in gerbils. Brain Research, 442, 345–348.

    CAS  PubMed  Google Scholar 

  • Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P., & Lipton, S. A. (1995). Apoptosis and necrosis: Two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 92, 7162–7166.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borlongan, C. V., Koutouzis, T. K., & Sanberg, P. R. (1997). 3-Nitropropionic acid animal model and Huntington’s disease. Neuroscience and Biobehavioral Reviews, 21, 289–293.

    CAS  PubMed  Google Scholar 

  • Bowen, B. C., Block, R. E., Sanchez-Ramos, J., Pattany, P. M., Lampman, D. A., Murdoch, J. B., & Quencer, R. M. (1994). Proton MR spectroscopy of the brain in 14 patients with Parkinson’s disease. American Journal of Neuroradiology, 16, 61–68.

    Google Scholar 

  • Braak, H., Braak, E., & Bohl, J. (1993). Staging of Alzheimer-related cortical destruction. European Neurology, 33, 403–408.

    CAS  PubMed  Google Scholar 

  • Bradley, S. R., Levey, A. I., Hersch, S. M., & Conn, P. J. (1996). Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. The Journal of Neuroscience, 16, 2044–2056.

    CAS  PubMed  Google Scholar 

  • Brooks, D. J. (1998). The early diagnosis of Parkinson’s disease. Annals of Neurology, 44(Suppl), S10–S18.

    CAS  PubMed  Google Scholar 

  • Brorson, J. R., Bindokas, V. P., Iwama, T., Marcuccilli, C. J., Chisholm, J. C., & Miller, R. J. (1995a). The Ca2+ influx induced by beta-amyloid peptide 25-35 in cultured hippocampal neurons results from network excitation. Journal of Neurobiology, 26, 325–338.

    CAS  PubMed  Google Scholar 

  • Brorson, J. R., Marcuccilli, C. J., & Miller, R. J. (1995b). Delayed antagonism of calpain reduces excitotoxicity in cultured neurons. Stroke, 26, 1259–1266.

    CAS  PubMed  Google Scholar 

  • Brouillet, E., & Beal, M. F. (1993). NMDA antagonists partially protect against MPTP induced neurotoxicity in mice. Neuroreport, 4, 387–390.

    CAS  PubMed  Google Scholar 

  • Brouillet, E., Hantraye, P., Ferrante, R. J., Dolan, R., Leroy-Willig, A., Kowall, N. W., & Beal, M. F. (1995). Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates. Proceedings of the National Academy of Sciences of the United States of America, 92, 7105–7109.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, A. M., Kristal, B. S., Effron, M. S., Shestopalov, A. I., Ullucci, P. A., Sheu, K. F., Blass, J. P., & Cooper, A. J. (2000). Zn2+ inhibits alpha-ketoglutarate-stimulated mitochondrial respiration and the isolated alpha-ketoglutarate dehydrogenase complex. The Journal of Biological Chemistry, 275, 13441–13447.

    CAS  PubMed  Google Scholar 

  • Bruno, V., Battaglia, G., Copani, A., Giffard, R. G., Raciti, G., Raffaele, R., Shinozaki, H., & Nicoletti, F. (1995a). Activation of class II or III metabotropic glutamate receptors protects cultured cortical neurons against excitotoxic degeneration. The European Journal of Neuroscience, 7, 1906–1913.

    CAS  PubMed  Google Scholar 

  • Bruno, V., Copani, A., Knopfel, T., Kuhn, R., Casabona, G., Dell’Albani, P., Condorelli, D. F., & Nicoletti, F. (1995b). Activation of metabotropic glutamate receptors coupled to inositol phospholipid hydrolysis amplifies NMDA-induced neuronal degeneration in cultured cortical cells. Neuropharmacology, 34, 1089–1098.

    CAS  PubMed  Google Scholar 

  • Buchan, A. M., Xue, D., Huang, Z. G., Smith, K. H., & Lesiuk, H. (1991). Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuroreport, 2, 473–476.

    CAS  PubMed  Google Scholar 

  • Burnashev, N., Schoepfer, R., Monyer, H., Ruppersberg, J. P., Gunther, W., Seeburg, P. H., & Sakmann, B. (1992). Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptors. Science, 257, 1415–1419.

    CAS  PubMed  Google Scholar 

  • Burnashev, N., Zhou, Z., Neher, E., & Sakmann, B. (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. The Journal of Physiology, 485(Pt 2), 403–418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calne, D. B., & Langston, J. W. (1983). Aetiology of Parkinson’s disease. Lancet, 2(8365–66), 1457–1459.

    CAS  PubMed  Google Scholar 

  • Cao, G., Xing, J., Xiao, X., Liou, A. K., Gao, Y., Yin, X. M., Clark, R. S., Graham, S. H., & Chen, J. (2007). Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. The Journal of Neuroscience, 27, 9278–9293.

    CAS  PubMed  Google Scholar 

  • Castillo, P. E., Malenka, R. C., & Nicoll, R. A. (1997). Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature, 388, 182–186.

    CAS  PubMed  Google Scholar 

  • Chan, P., Langston, J. W., & Monte, D. A. (1993). MK-801 temporarily prevents MPTP-induced acute dopamine depletion and MPP+ elimination in the mouse striatum. The Journal of Pharmacology and Experimental Therapeutics, 267, 1515–1520.

    CAS  PubMed  Google Scholar 

  • Chatterton, J. E., Awobuluyi, M., Premkumar, L. S., Takahashi, H., Talantova, M., Shin, Y., Cui, J., Tu, S., Sevarino, K. A., Nakanishi, N., Tong, G., Lipton, S. A., & Zhang, D. (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 415, 793–798.

    CAS  PubMed  Google Scholar 

  • Chavis, P., Shinozaki, H., Bockaert, J., & Fagni, L. (1994). The metabotropic glutamate receptor types 2/3 inhibit L-type calcium channels via a pertussis toxin-sensitive G-protein in cultured cerebellar granule cells. The Journal of Neuroscience, 14, 7067–7076.

    CAS  PubMed  Google Scholar 

  • Chen, Y. I., Jenkins, B. G., & Rosen, B. R. (1994). Evidence for impairment of energy metabolism in Parkinson’s disease using in vivo localized MR spectroscopy. Proceedings of International Society for Magnetic Resonance in Medicine, 1, 194.

    Google Scholar 

  • Chen, J., Graham, S. H., Chan, P. H., Lan, J., Zhou, R. L., & Simon, R. P. (1995). BCL-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport, 6, 394–398.

    CAS  PubMed  Google Scholar 

  • Choi, D. W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neuroscience Letters, 58, 293–297.

    CAS  PubMed  Google Scholar 

  • Choi, D. W. (1987). Ionic dependence of glutamate neurotoxicity. The Journal of Neuroscience, 7, 369–379.

    CAS  PubMed  Google Scholar 

  • Choi, D. W., Maulucci-Gedde, M., & Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell culture. The Journal of Neuroscience, 7, 357–368.

    CAS  PubMed  Google Scholar 

  • Cleveland, D. W., & Rothstein, J. D. (2001). From Charcot to Lou Gehrig: Deciphering selective motor neuron death in ALS. Nature Reviews Neuroscience, 2(11), 806–819.

    CAS  PubMed  Google Scholar 

  • Cook, D. J., Teves, L., & Tymianski, M. (2012). Treatment of stroke with PSD-05 inhibitor in the gyrencephalic primate brain. Nature, 483, 213–218.

    CAS  PubMed  Google Scholar 

  • Couratier, P., Hugon, J., Sindou, P., Vallat, J. M., & Dumas, M. (1993). Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet, 341, 265–268.

    CAS  PubMed  Google Scholar 

  • Couratier, P., Sindou, P., Esclaire, F., & Hugon, J. (1994). Neuroprotective effects of riluzole in ALS CSF toxicity. Neuroreport, 5, 1012–1014.

    CAS  PubMed  Google Scholar 

  • Crumrine, R. C., Bergstrand, K., Cooper, A. T., Faison, W. L., & Cooper, B. R. (1997). Lamotrigine protects hippocampal CA1 neurons from ischemic damage after cardiac arrest. Stroke, 28, 2230–2236.

    CAS  PubMed  Google Scholar 

  • Cullen, W. K., Wu, J. Q., Anwyl, R., & Rowan, M. J. (1996). beta-Amyloid produces a delayed NMDA receptor-dependent reduction in synaptic transmission in rat hippocampus. Neuroreport, 8, 87–92.

    CAS  PubMed  Google Scholar 

  • Curtis, D. R., Phillis, J. W., & Watkins, J. C. (1959). Chemical excitation of spinal neurones. Nature, 183, 611–612.

    CAS  PubMed  Google Scholar 

  • Das, S., Sasaki, Y. F., Rothe, T., Premkumar, L. S., Takasu, M., Crandall, J. E., Dikkes, P., Conner, D. A., Rayudu, P. V., Cheung, W., Chen, H. S., Lipton, S. A., & Nakanishi, N. (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature, 393, 377–381.

    CAS  PubMed  Google Scholar 

  • Davis, G. C., Williams, A. C., Markey, S. P., Ebert, M. H., Caine, E. D., Reichert, C. M., & Kopin, I. J. (1979). Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Research, 1, 249–254.

    CAS  PubMed  Google Scholar 

  • Davis, S. M., Lees, K. R., Albers, G. W., Diener, H. C., Markabi, S., Karlsson, G., & Norris, J. (2000). Selfotel in acute ischemic stroke: Possible neurotoxic effects of an NMDA antagonist. Stroke, 31, 347–354.

    CAS  PubMed  Google Scholar 

  • Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S., & Snyder, S. H. (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical culture. Proceedings of the National Academy of Sciences of the United States of America, 88, 6368–6371.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson, V. L., Kizushi, V. M., Huang, P. L., Snyder, S. H., & Dawson, T. M. (1996). Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice. The Journal of Neuroscience, 16, 2479–2487.

    CAS  PubMed  Google Scholar 

  • Di Monte, D., Tetrud, J. W., & Langston, J. W. (1991). Blood lactate in Parkinson’s disease and senescence. Biochemical and Biophysical Research Communications, 170, 483–489.

    Google Scholar 

  • DiDonato, S., Zeviani, M., Giovannini, P., Savarese, N., Rimoldi, M., Mariotti, C., Girotti, F., & Caraceni, T. (1993). Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology, 43, 2262–2268.

    CAS  PubMed  Google Scholar 

  • Du, Y., Bales, K. R., Dodel, R. C., Hamilton-Byrd, E., Horn, J. W., Czilli, D. L., Simmons, L. K., Ni, B., & Paul, S. M. (1997). Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proceedings of the National Academy of Sciences of the United States of America, 94, 11657–11662.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du, S., McLaughlin, B., Pal, S., & Aizenman, E. (2002). In vitro neurotoxicity of methylisothiazolinone, a commonly used industrial and household biocide, proceeds via a zinc and extracellular signal-regulated kinase mitogen-activated protein kinase-dependent pathway. The Journal of Neuroscience, 22, 7408–7416.

    CAS  PubMed  Google Scholar 

  • Dugan, L. L., Sensi, S. L., Canzoniero, L. M., Handran, S. D., Rothman, S. M., Lin, T. S., Goldberg, M. P., & Choi, D. W. (1995). Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. The Journal of Neuroscience, 15, 6377–6388.

    CAS  PubMed  Google Scholar 

  • Dykens, J. A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implications for neurodegeneration. Journal of Neurochemistry, 63, 584–591.

    CAS  PubMed  Google Scholar 

  • Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A., & Nagata, S. (1998). A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature, 391, 43–50.

    CAS  PubMed  Google Scholar 

  • Faddis, B. T., Hasbani, M. J., & Goldberg, M. P. (1997). Calpain activation contributes to dendritic remodeling after brief excitotoxic injury in vitro. The Journal of Neuroscience, 17, 951–959.

    CAS  PubMed  Google Scholar 

  • Faden, A. I., Demediuk, P., Panter, S. S., & Vink, R. (1989). The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science, 244, 798–800.

    CAS  PubMed  Google Scholar 

  • Fearnley, J., & Lees, A. (1991). Parkinson’s disease: Neuropathology. Brain, 114, 2283–2301.

    PubMed  Google Scholar 

  • Fink, J. S., Verhave, M., Walton, K., Mandel, G., & Goodman, R. H. (1991). Cyclic AMP- and phorbol ester-induced transcriptional activation are mediated by the same enhancer element in the human vasoactive intestinal peptide gene. The Journal of Biological Chemistry, 266, 3882–3887.

    CAS  PubMed  Google Scholar 

  • Fonnum, F. (1984). Glutamate: A neurotransmitter in mammalian brain. Journal of Neurochemistry, 42, 1–11.

    CAS  PubMed  Google Scholar 

  • Francis, P. T., Pangalos, M. N., & Bowen, D. M. (1992). Animal and drug modelling for Alzheimer synaptic pathology. Progress in Neurobiology, 39, 517–545.

    CAS  PubMed  Google Scholar 

  • Frandsen, A., & Schousboe, A. (1991). Dantrolene prevents glutamate cytotoxicity and Ca2+-release from intracellular stores in cultures cerebral cortical neurons. Journal of Neurochemistry, 56, 1075–1078.

    CAS  PubMed  Google Scholar 

  • Frandsen, A., & Schousboe, A. (1992). Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 89, 2590–2594.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frederickson, C. J., Hernandez, M. D., & McGinty, J. F. (1989). Translocation of zinc may contribute to seizure-induced death of neurons. Brain Research, 480, 317–321.

    CAS  PubMed  Google Scholar 

  • Frerking, M., Schmitz, D., Zhou, Q., Johansen, J., & Nicoll, R. A. (2001). Kainate receptors depress excitatory synaptic transmission at CA3 → CA1 synapses in the hippocampus via a direct presynaptic action. The Journal of Neuroscience, 21, 2958–2966.

    CAS  PubMed  Google Scholar 

  • Furukawa, T., Hoshino, S., Kobayashi, S., Asakura, T., Takahashi, M., Atsumi, T., & Teramoto, A. (2003). The glutamate AMPA receptor antagonist, YM872, attenuates cortical tissue loss, regional cerebral edema, and neurological motor deficits after experimental brain injury in rats. Journal of Neurotrauma, 20, 269–278.

    PubMed  Google Scholar 

  • Gaudette, M., Hirano, M., & Siddique, T. (2000). Current status of SOD1 mutations in familial amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1, 83–89.

    CAS  PubMed  Google Scholar 

  • Geiger, J. R., Melcher, T., Koh, D. S., Sakmann, B., Seeburg, P. H., Jonas, P., & Monyer, H. (1995). Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron, 15, 193–204.

    CAS  PubMed  Google Scholar 

  • Giulian, D., Haverkamp, L. J., Li, J., Karshin, W. L., Yu, J., Tom, D., Li, X., & Kirkpatrick, J. B. (1995). Senile plaques stimulate microglia to release a neurotoxin found in Alzheimer brain. Neurochemistry International, 27, 119–137.

    CAS  PubMed  Google Scholar 

  • Globus, M. Y., Busto, R., Dietrich, W. D., Martinez, E., Valdes, I., & Ginsberg, M. D. (1988). Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia. Neuroscience Letters, 91, 36–40.

    CAS  PubMed  Google Scholar 

  • Globus, M. Y., Busto, R., Martinez, E., Valdés, I., & Dietrich, W. D. (1990). Ischemia induces release of glutamate in regions spared from histopathologic damage in the rat. Stroke, 21, III43–III46.

    CAS  PubMed  Google Scholar 

  • Gonzalez-Zulueta, M., Ensz, L. M., Mukhina, G., Lebovitz, R. M., Zwacka, R. M., Engelhardt, J. F., Oberley, L. W., Dawson, V. L., & Dawson, T. M. (1998). Manganese superoxide dismutase protects nNOS neurons from NMDA and nitric oxide-mediated neurotoxicity. The Journal of Neuroscience, 18, 2040–2055.

    CAS  PubMed  Google Scholar 

  • Goodwin, J. L., Uemura, E., & Cunnick, J. E. (1995). Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Research, 692, 207–214.

    CAS  PubMed  Google Scholar 

  • Gossel, M., Schmidt, W. J., Loscher, W., Zajaczkowski, W., & Danysz, W. J. (1995). Effect of coadministration of glutamate receptor antagonists and dopaminergic agonists on locomotion in monoamine-depleted rats. Journal of Neural Transmission, 19, 27–39.

    Google Scholar 

  • Greene, J. G., & Greenamyre, J. T. (1995). Manipulation of membrane potential modulates malonate-induced striatal excitotoxicity in vivo. Journal of Neurochemistry, 64, 2332–2338.

    CAS  PubMed  Google Scholar 

  • Greene, J. G., Porter, R. H. P., Eller, R. V., & Greenamyre, J. T. (1993). Inhibition of succinate dehydrogenase by malonic acid produces an “excitotoxic” lesion in rat striatum. Journal of Neurochemistry, 61, 1151–1154.

    CAS  PubMed  Google Scholar 

  • Guerrini, L., Blasi, F., & Denis, D. (1995). Synaptic activation of NF-kappa B by glutamate in cerebellar granule neurons in vitro. Proceedings of the National Academy of Sciences of the United States of America, 92, 9077–9081.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guyot, M. C., Palfi, S., Stutzmann, J. M., Maziere, M., Hantraye, P., & Brouillet, E. (1997). Riluzole protects from motor deficits and striatal degeneration produced by systemic 3-nitropropionic acid intoxication in rats. Neuroscience, 81, 141–149.

    CAS  PubMed  Google Scholar 

  • Hansson, O., Petersen, A., Leist, M., Nicotera, P., Castilho, R. F., & Brundin, P. (1999). Transgenic mice expressing a Huntington’s disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 96, 8727–8732.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H., & Sawa, A. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature Cell Biology, 7, 665–674.

    CAS  PubMed  Google Scholar 

  • Hardingham, G. E., Arnold, F. J. L., & Bading, H. (2001). A calcium microdomain near NMDA receptors: On switch for ERK-dependent synapse-to-nucleus communication. Nature Neuroscience, 4, 565–566.

    CAS  PubMed  Google Scholar 

  • Harris, M. E., Wang, Y., Pedigo, N. W., Jr., Hensley, K., Butterfield, D. A., & Carney, J. M. (1996). Amyloid beta peptide (25–35) inhibits Na+ -dependent glutamate uptake in rat hippocampal astrocyte cultures. Journal of Neurochemistry, 67, 277–286.

    CAS  PubMed  Google Scholar 

  • Hattori, N., Tanaka, M., Ozawa, T., & Mizuno, Y. (1991). Immunohistochemical studies on complexes I, II, III and IV of mitochondria in Parkinson’s disease. Annals of Neurology, 30, 563–571.

    CAS  PubMed  Google Scholar 

  • Hayashi, T. (1952). A physiological study of epileptic seizures following cortical stimulation in animals and its application to human clinics. Japanese Journal of Pharmacology, 3, 46–64.

    CAS  Google Scholar 

  • Hayashi, T. (1958). Inhibition and excitation due to g-aminobutyric acid in the central nervous system. Nature, 182, 1076–1077.

    CAS  PubMed  Google Scholar 

  • Henshaw, R., Jenkins, B. G., Schulz, J. B., Ferrante, R. J., Kowall, N. W., Rosen, B. R., & Beal, M. F. (1994). Malonate produces striatal lesions by indirect NMDA receptor activation. Brain Research, 647, 161–166.

    CAS  PubMed  Google Scholar 

  • Herb, A., Burnashev, N., Werner, P., Sakmann, B., Wisden, W., & Seeburg, P. H. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron, 8, 775–785.

    CAS  PubMed  Google Scholar 

  • Herb, A., Higuchi, M., Sprengel, R., & Seeburg, P. H. (1996). Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proceedings of the National Academy of Sciences of the United States of America, 93, 1875–1880.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heuss, C., Scanziani, M., Gahwiler, B. H., & Gerber, U. (1999). G-protein-independent signaling mediated by metabotropic glutamate receptors. Nature Neuroscience, 2, 1070–1077.

    CAS  PubMed  Google Scholar 

  • Hicks, R. R., Smith, D. H., Gennarelli, T. A., & McIntosh, T. (1994). Kynurenate is neuroprotective following experimental brain injury in the rat. Brain Research, 655, 91–96.

    CAS  PubMed  Google Scholar 

  • Hillered, L., Hallstrom, A., Segersvard, S., Persson, L., & Ungerstedt, U. (1989). Dynamics of extracellular metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intracerebral microdialysis. Journal of Cerebral Blood Flow and Metabolism, 9, 607–616.

    CAS  PubMed  Google Scholar 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.

    CAS  PubMed  Google Scholar 

  • Hollmann, M., Hartley, M., & Heinemann, S. (1991). Ca2+ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science, 252, 851–853.

    CAS  PubMed  Google Scholar 

  • Hugon, J., Vallat, J. M., Spencer, P. S., Leboutet, M. J., & Barthe, D. (1989). Kainic acid induces early and delayed degenerative neuronal changes in rat spinal cord. Neuroscience Letters, 104, 258–262.

    CAS  PubMed  Google Scholar 

  • Huie, R. E., & Padmaja, S. (1993). The reaction of no with superoxide. Free Radical Research Communications, 18, 195–199.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., & Kaindl, A. M. (2011). Neuronal death and oxidative stress in the developing brain. Antioxidants and Redox Signaling, 14, 1535–1550.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., & Turski, L. (1996). Neurodegenerative disorders: Clues from glutamate and energy metabolism. Critical Reviews in Neurobiology, 10, 239–263.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., & Turski, L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurology, 1, 383–386.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., Mosinger, J. L., Salles, K. S., Labruyere, J., & Olney, J. W. (1989). Sensitivity of the developing rat brain to hypobaric/ischemic damage parallels sensitivity to N-methyl-aspartate neurotoxicity. The Journal of Neuroscience, 9, 2809–2818.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., Qin, Y.-Q., Labruyere, J., & Olney, J. W. (1996). Motor neuron degeneration induced by excitotoxin agonists has features in common with those seen in the SOD-1 transgenic mouse model of amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 55, 211–224.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., Bosch, F., Miksa, M., Vöckler, J., Bittigau, P., Dikranian, K., Tenkova, T., Turski, L., & Olney, J. W. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 283, 70–74.

    CAS  PubMed  Google Scholar 

  • Ikonomidou, C., Stefovska, V., & Turski, L. (2000). Neuronal death enhanced by N-methyl-D-aspartate antagonists. Proceedings of the National Academy of Sciences of the United States of America, 97, 12885–12890.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue, K., Branigan, D., & Xiong, Z. G. (2010). Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. The Journal of Biological Chemistry, 285, 7430–7439.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ischiropoulos, H., Zhu, L., Chen, J., Tsai, M., Martin, J. C., Smith, C. D., & Beckman, J. S. (1992). Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Archives of Biochemistry and Biophysics, 298, 431–437.

    CAS  PubMed  Google Scholar 

  • Janetzky, B., Hauck, S., Youdim, M. B., Riederer, P., Jellinger, K., Pantucek, F., Zochling, R., Boissl, K. W., & Reichmann, H. (1994). Unaltered aconitase activity, but decreased complex I activity in substantia nigra pars compacta of patients with Parkinson’s disease. Neuroscience Letters, 169, 126–128.

    CAS  PubMed  Google Scholar 

  • Jang, Y. G., Ilodigwe, D., & Macdonald, R. L. (2009). Metaanalysis of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage. Neurocritical Care, 10, 141–147.

    CAS  PubMed  Google Scholar 

  • Johnson, J. W., & Ascher, P. (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, 325, 529–531.

    CAS  PubMed  Google Scholar 

  • Jones-Humble, S. A., Morgan, P. F., & Cooper, B. R. (1994). The novel anticonvulsant lamotrigine prevents dopamine depletion in C57 black mice in the MPTP animal model of Parkinson’s disease. Life Sciences, 54, 245–252.

    CAS  PubMed  Google Scholar 

  • Jorgensen, M. B., & Diemer, N. H. (1982). Selective neuron loss after cerebral ischemia in the rat: Possible role of transmitter glutamate. Acta Neurologica Scandinavica, 66, 536–546.

    CAS  PubMed  Google Scholar 

  • Kieburtz, K., Feigin, A., McDermott, M., Como, P., Abwender, D., Zimmermann, C., Hickey, C., Orme, C., Claude, K., Sotack, J., Greenamyre, J. T., Dunn, C., & Shoulson, I. (1996). A controlled trial of remacemide hydrochloride in Huntington’s disease. Movement Disorders, 11, 273–277.

    CAS  PubMed  Google Scholar 

  • Kingston, A. E., O’Neill, M. J., Bond, A., Bruno, V., Battaglia, G., Nicoletti, F., Harris, J. R., Clark, B. P., Monn, J. A., Lodge, D., & Schoepp, D. D. (1999). Neuroprotective actions of novel and potent ligands of group I and group II metabotropic glutamate receptors. Annals of the New York Academy of Sciences, 890, 438–449.

    CAS  PubMed  Google Scholar 

  • Klockgether, T., Turski, L., Honore, T., Zhang, Z. M., Gash, D. M., Kurlan, R., & Greenamyre, J. T. (1991). The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys. Annals of Neurology, 30, 717–723.

    CAS  PubMed  Google Scholar 

  • Koh, J. Y., Suh, S. W., Gwag, B. J., He, Y. Y., Hsu, C. Y., & Choi, D. W. (1996). The role of zinc in selective neuronal death after transient global cerebral ischemia. Science, 272, 1013–1016.

    CAS  PubMed  Google Scholar 

  • Komuro, H., & Rakic, P. (1993). Modulation of neuronal migration by NMDA receptors. Science, 260, 95–97.

    CAS  PubMed  Google Scholar 

  • Koura, S. S., Doppenberg, E. M., Marmarou, A., Choi, S., Young, H. F., & Bullock, R. (1998). Relationship between excitatory amino acid release and outcome after severe human head injury. Acta Neurochirurgica. Supplement (Wien), 71, 244–246.

    CAS  Google Scholar 

  • Krebs, H. A. (1935). Metabolism of amino acids. III Deamination of amino acids. Biochemical Journal, 29, 1520–1644.

    Google Scholar 

  • Lacomblez, L., Bensimon, G., Leigh, P. N., Guillet, P., & Meininger, V. (1996). Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet, 347, 1425–1431.

    CAS  PubMed  Google Scholar 

  • Lafon-Cazal, M., Pietri, S., Culcasi, M., & Bockaert, J. (1993). NMDA-dependent superoxide production and neurotoxicity. Nature, 364, 535–537.

    CAS  PubMed  Google Scholar 

  • Lange, K. W., Loschmann, P. A., Sofic, E., Burg, M., Horowski, R., Kalveram, K. T., Wachtel, H., & Riederer, P. (1993). The competitive NMDA antagonists CPP protect substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn-Schmiedeberg’s Archives of Pharmacology, 348, 586–592.

    CAS  PubMed  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980.

    CAS  PubMed  Google Scholar 

  • Lanzino, G., & Kassell, N. F. (1999). Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part II. A cooperative study in North America. Journal of Neurosurgery, 90, 1018–1024.

    CAS  PubMed  Google Scholar 

  • Lanzino, G., Kassell, N. F., Dorsch, N. W., Pasqualin, A., Brandt, L., Schmiedek, P., Truskowski, L. L., & Alves, W. M. (1999). Double-blind, randomized, vehicle-controlled study of high-dose tirilazad mesylate in women with aneurysmal subarachnoid hemorrhage. Part I. A cooperative study in Europe, Australia, New Zealand, and South Africa. Journal of Neurosurgery, 90, 1011–1017.

    CAS  PubMed  Google Scholar 

  • Laurie, D. J., & Seeburg, P. H. (1994). Ligand affinities at recombinant N-methyl-D-aspartate receptors depend on subunit composition. European Journal of Pharmacology, 268(3), 335–345.

    CAS  PubMed  Google Scholar 

  • Leach, M. J., Marden, C. M., & Miller, A. A. (1986). Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neurochemical studies on the mechanism of action. Epilepsia, 27, 490–497.

    CAS  PubMed  Google Scholar 

  • Lees, G. J. (1993). The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. Journal of Neurological Sciences, 114, 119–122.

    CAS  Google Scholar 

  • Lees, K. R., Asplund, K., Carolei, A., Davis, S. M., Diener, H. C., Kaste, M., Orgogozo, J. M., & Whitehead, J. (2000). Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: A randomised controlled trial. GAIN International Investigators. Lancet, 355, 1949–1954.

    CAS  PubMed  Google Scholar 

  • Lees, K. R., Zivin, J. A., Ashwood, T., Davalos, A., Davis, S. M., Diener, H. C., Grotta, J., Lyden, P., Shuaib, A., Hårdemark, H. G., Wasiewski, W. W., & Stroke-Acute Ischemic NXY Treatment (SAINT I) Trial Investigators. (2006). NXY-059 for acute ischemic stroke. The New England Journal of Medicine, 354, 588–600.

    CAS  PubMed  Google Scholar 

  • Lucas, D. R., & Newhouse, J. P. (1957). The toxic effect of sodium-L-glutamate on the inner layers of the retina. Archives of Ophthalmology, 58, 193–201.

    CAS  PubMed  Google Scholar 

  • Ludolph, A. C., Meyer, T., Riepe, M. W., & Vökel, H. (1988). Amyotrophic lateral sclerosis and glutamate. Restorative Neurology and Neuroscience, 13, 59–67.

    Google Scholar 

  • Luquin, M. R., Obeso, J. A., Laguna, J., Guillen, J., & Martineslage, J. M. (1993). The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. European Journal of Pharmacology, 235, 297–300.

    CAS  PubMed  Google Scholar 

  • Malgouris, C., Bardot, F., Daniel, M., Pellis, F., Rataud, J., Uzan, A., Blanchard, J. C., & Laduron, P. M. (1989). Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. The Journal of Neuroscience, 9, 3720–3727.

    CAS  PubMed  Google Scholar 

  • Mann, V. M., Cooper, J. M., Krige, D., Daniel, S. E., Schapira, A. H., & Marsden, C. D. (1992). Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain, 115, 333–342.

    PubMed  Google Scholar 

  • Marshall, L. F., Maas, A. I., Marshall, S. B., Bricolo, A., Fearnside, M., Iannotti, F., Klauber, M. R., Lagarrigue, J., Lobato, R., Persson, L., Pickard, J. D., Piek, J., Servadei, F., Wellis, G. N., Morris, G. F., Means, E. D., & Musch, B. (1998). A multicenter trial on the efficacy of using tirilazad mesylate in cases of head injury. Journal of Neurosurgery, 89, 519–525.

    CAS  PubMed  Google Scholar 

  • Martinez-Guijarro, F. J., Soriano, E., Del Rio, J. A., & Lopez-Garcia, C. (1991). Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. Journal of Neurocytology, 20, 834–843.

    CAS  PubMed  Google Scholar 

  • Matsuda, K., Kamiya, Y., Matsuda, S., & Yuzaki, M. (2002). Cloning and characterization of a novel NMDA receptor subunit NR3B: A dominant subunit that reduces calcium permeability. Brain Research. Molecular Brain Research, 100, 43–52.

    CAS  PubMed  Google Scholar 

  • Mattson, M. P., & Goodman, Y. (1995). Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Research, 676, 219–224.

    CAS  PubMed  Google Scholar 

  • Mayer, M. L., & Vyklicky, L., Jr. (1989). The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. The Journal of Physiology, 415, 351–365.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer, M. L., Westbrook, G. L., & Guthrie, P. B. (1984). Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature, 309, 261–263.

    CAS  PubMed  Google Scholar 

  • McDonald, J. W., & Schoepp, D. D. (1992). The metabotropic excitatory amino acid receptors agonist 1S,3R-ACPD selectively potentiates N-methyl-D-aspartate-induced brain injury. European Journal of Pharmacology, 215, 353–354.

    CAS  PubMed  Google Scholar 

  • McGeer, P. L., Itagaki, S., Akiyama, H., & McGeer, E. G. (1989). Rate of cell death in parkinsonism indicates active neuropathological process. Annals of Neurology, 24, 574–576.

    Google Scholar 

  • McIntosh, T. K., Vink, R., Soares, H., Hayes, R., & Simon, R. (1989). Effects of the N-methyl-d-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. Journal of Neurotrauma, 6, 247–259.

    CAS  PubMed  Google Scholar 

  • McLaughlin, B., Pal, S., Tran, M. P., Parsons, A. A., Barone, F. C., Erhardt, J. A., & Aizenman, E. (2001). p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. The Journal of Neuroscience, 21, 3303–3311.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McMaster, O. G., Du, F., French, E. D., & Schwarcz, R. (1991). Focal injection of aminooxyacetic acid produces seizures and lesions in rat hippocampus: Evidence for mediation by NMDA receptors. Experimental Neurology, 113, 378–385.

    CAS  PubMed  Google Scholar 

  • Miller, R. G., Mitchell, J. D., Lyon, M., & Moore, D. H. (2007). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev, 1, CD001447.

    Google Scholar 

  • Molina y Vedia, L., McDonald, B., Reep, B., Brüne, B., Di Silvio, M., Billiar, T. R., & Lapetina, E. G. (1992). Nitric oxide-induced S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase inhibits enzymatic activity and increases endogenous ADP-ribosylation. The Journal of Biological Chemistry, 267, 24929–24932.

    CAS  PubMed  Google Scholar 

  • Montastruc, J. L., Rascol, O., & Senard, J. M. (1997). Glutamate antagonists and Parkinson’s disease: A review of clinical data. Neuroscience and Biobehavioral Reviews, 21, 477–480.

    CAS  PubMed  Google Scholar 

  • Monyer, H., Seeburg, P. H., & Wisden, W. (1991). Glutamate-operated channels: Developmentally early and mature forms arise by alternative splicing. Neuron, 6, 799–810.

    CAS  PubMed  Google Scholar 

  • Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B., & Seeburg, P. H. (1992). Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 256, 1217–1221.

    CAS  PubMed  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D. J., Sakmann, B., & Seeburg, P. H. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12, 529–540.

    CAS  PubMed  Google Scholar 

  • Morris, G. F., Bullock, R., Marshall, S. B., Marmarou, A., Maas, A., & Marshall, L. F. (1999). Failure of the competitive N-methyl-d-aspartate antagonist Selfotel (CGS 19755) in the treatment of severe head injury: Results of two phase III clinical trials. The Selfotel Investigators. Journal of Neurosurgery, 91, 737–743.

    CAS  PubMed  Google Scholar 

  • Muir, K. W. (2006). Glutamate-based therapeutic approaches: Clinical trials with NMDA antagonists. Current Opinion in Pharmacology, 6, 53–60.

    CAS  PubMed  Google Scholar 

  • Muir, K. W., Holzapfel, L., & Lees, K. R. (2000). Phase II clinical trial of sipatrigine (619C89) by continuous infusion in acute stroke. Cerebrovascular Diseases, 10, 431–436.

    CAS  PubMed  Google Scholar 

  • Murman, D. L., Giordani, B., Mellow, A. M., Johanns, J. R., Little, R. J., Hariharan, M., & Foster, N. L. (1997). Cognitive, behavioral, and motor effects of the NMDA antagonist ketamine in Huntington’s disease. Neurology, 49, 153–161.

    CAS  PubMed  Google Scholar 

  • Nagano, I., Wong, P. C., & Rothstein, J. D. (1996). Nitration of glutamate transporters in transgenic mice with a familial amyotrophic lateral sclerosis-linked SOD1 mutation. Annals of Neurology, 40, 542.

    Google Scholar 

  • Nakagawa, D., Ohshima, Y., Takusagawa, M., Ikota, N., Takahashi, Y., Shimizu, S., & Ozawa, T. (2001). Functional modification of cytochrome c by peroxynitrite in an electron transfer reaction. Chemical & Pharmaceutical Bulletin (Tokyo), 49, 1547–1554.

    CAS  Google Scholar 

  • Nakagawa-Hattori, Y., Yoshino, H., Kondo, T., Mizuno, Y., & Horai, S. (1992). Is Parkinson’s disease a mitochondrial disorder? Journal of Neurological Sciences, 107, 29–33.

    CAS  Google Scholar 

  • Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science, 258, 597–603.

    CAS  PubMed  Google Scholar 

  • Nicholls, P., & Malviya, A. N. (1968). Inhibition of nonphosphorylating electron transfer by zinc. The problem of delineating interaction sites. Biochemistry, 7, 305–310.

    CAS  PubMed  Google Scholar 

  • Nilsson, P., Hillered, L., Ponten, U., Pontén, U., & Ungerstedt, U. (1990). Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. Journal of Cerebral Blood Flow and Metabolism, 10, 631–637.

    CAS  PubMed  Google Scholar 

  • Noh, K. M., & Koh, J. Y. (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. The Journal of Neuroscience, 20, RC111.

    CAS  PubMed  Google Scholar 

  • Novelli, A., Reilly, J. A., Lysko, P. G., & Henneberry, R. C. (1988). Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptors when intracellular energy levels are reduced. Brain Research, 451, 205–212.

    CAS  PubMed  Google Scholar 

  • Ogawa, A., Yoshimoto, T., Kikuchi, H., Sano, K., Saito, I., Yamaguchi, T., & Yasuhara, H. (1999). Ebselen in acute middle cerebral artery occlusion: A placebo-controlled, double-blind clinical trial. Cerebrovascular Diseases, 9, 112–118.

    CAS  PubMed  Google Scholar 

  • Olney, J. W. (1969). Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science, 164, 719–721.

    CAS  PubMed  Google Scholar 

  • Olney, J. W. (1971). Glutamate-induced neuronal necrosis in the infant mouse hypothalamus: An electron microscopic study. Journal of Neuropathology and Experimental Neurology, 30, 75–90.

    CAS  PubMed  Google Scholar 

  • Olney, J. W., & Ho, O. L. (1970). Brain damage in infant mice following oral intake of glutamate, aspartate or cysteine. Nature, 227, 609–610.

    CAS  PubMed  Google Scholar 

  • Olney, J. W., Sharpe, L. G., & Feigin, R. D. (1972). Glutamate-induced brain damage in infant primates. Journal of Neuropathology and Experimental Neurology, 31, 464–488.

    CAS  PubMed  Google Scholar 

  • Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54, 581–618.

    CAS  PubMed  Google Scholar 

  • Ozyurt, E., Graham, D. I., Woodruff, G. N., & McCulloch, J. (1988). Protective effect of the glutamate antagonist, MK-801 in focal cerebral ischemia in the cat. Journal of Cerebral Blood Flow and Metabolism, 8, 138–143.

    CAS  PubMed  Google Scholar 

  • Palfi, S. P., Ferrante, R. J., Brouillet, E., Beal, M. F., Dolan, R., Guyot, M. C., Peschanski, M., & Hantraye, P. (1996). Chronic 3-nitropropionic acid treatment in baboons replicates the cognitive and motor deficits of Huntington’s disease. The Journal of Neuroscience, 16, 3019–3025.

    CAS  PubMed  Google Scholar 

  • Papa, S. M., Engber, T. M., Boldry, R. C., & Chase, T. N. (1993). Opposite effects of NMDA and AMPA receptor blockade on catalepsy induced by dopamine receptor antagonists. European Journal of Pharmacology, 232, 247–253.

    CAS  PubMed  Google Scholar 

  • Perry, T. L., Hansen, S., & Jones, K. (1987). Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology, 37, 1845–1848.

    CAS  PubMed  Google Scholar 

  • Pin, J. P., & Duvoisin, R. (1995). The metabotropic glutamate receptors: Structure and functions. Neuropharmacology, 34, 1–26.

    CAS  PubMed  Google Scholar 

  • Pohl, D., Bittigau, P., Ishimaru, M. J., Stadthaus, D., Hübner, C., Olney, J. W., Turski, L., & Ikonomidou, C. (1999). NMDA antagonists and apoptotic cell death triggered by head trauma in developing rat brain. Proceedings of the National Academy of Sciences of the United States of America, 96, 2508–2513.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polster, B. M., Basanez, G., Etxebarria, A., Hardwick, J. M., & Nicholls, D. G. (2005). Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. The Journal of Biological Chemistry, 280, 6447–6454.

    CAS  PubMed  Google Scholar 

  • Portera-Cailliau, C., Price, D. L., & Martin, L. J. (1997). Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: Further evidence for an apoptosis-necrosis continuum. The Journal of Comparative Neurology, 378, 88–104.

    CAS  PubMed  Google Scholar 

  • Rabey, J. M., Nissipeanu, P., & Korczyn, A. D. (1992). Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson’s disease. Journal of Neural Transmission, 4, 277–282.

    CAS  PubMed  Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., & Freeman, B. A. (1991a). Peroxynitrite-induced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Archives of Biochemistry and Biophysics, 288, 484–487.

    Google Scholar 

  • Radi, R., Beckman, J. S., Bush, K. M., & Freeman, B. A. (1991b). Peroxynitrite oxidation of sulfhydryls. The Journal of Biological Chemistry, 266, 4244–4250.

    CAS  PubMed  Google Scholar 

  • Radi, R., Rodriguez, M., Castro, L., & Telleri, R. (1994). Inhibition of mitochondrial electron transport by peroxynitrite. Archives of Biochemistry and Biophysics, 308, 89–95.

    CAS  PubMed  Google Scholar 

  • Randall, R. D., & Thayer, S. A. (1992). Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. The Journal of Neuroscience, 12, 1882–1895.

    CAS  PubMed  Google Scholar 

  • Reisberg, B., Doody, R., Stöffler, A., Schmitt, F., Ferris, S., Möbius, H. J., & Memantine Study Group. (2003). Memantine in moderate-to-severe Alzheimer’s disease. The New England Journal of Medicine, 348, 1333–1341.

    CAS  PubMed  Google Scholar 

  • Reynolds, I. J., & Hastings, T. G. (1995). Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. The Journal of Neuroscience, 15, 3318–3327.

    CAS  PubMed  Google Scholar 

  • Riccio, A., Ahn, S., Davenport, C. M., Blendy, J. A., & Ginty, D. D. (1999). Mediation by a CREB family transcription factors of NGF-dependent survival of sympathetic neurons. Science, 286, 2358–2361.

    CAS  PubMed  Google Scholar 

  • Rock, D. M., & Macdonald, R. L. (1992). The polyamine spermine has multiple actions on N-methyl-d-aspartate receptor single-channel currents in cultured cortical neurons. Molecular Pharmacology, 41, 83–88.

    CAS  PubMed  Google Scholar 

  • Rothman, S. (1984). Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. The Journal of Neuroscience, 4, 1884–1891.

    CAS  PubMed  Google Scholar 

  • Rothman, S. M. (1985). The neurotoxicity of excitatory amino acids is produced by passive chloride influx. The Journal of Neuroscience, 5, 1483–1489.

    CAS  PubMed  Google Scholar 

  • Rothstein, J. D., Martin, L. J., & Kuncl, R. W. (1992). Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. New England Journal of Medicine, 326, 1464–1468.

    CAS  PubMed  Google Scholar 

  • Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J., & Kuncl, R. W. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals of Neurology, 38, 73–84.

    CAS  PubMed  Google Scholar 

  • Santiago, M., Venero, J. L., Machado, A., & Cano, J. (1992). In vivo protection of striatum from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Brain Research, 586, 203–207.

    CAS  PubMed  Google Scholar 

  • Sattler, R., Charlton, M. P., Hafner, M., & Tymianski, M. (1998). Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. Journal of Neurochemistry, 71, 2349–2364.

    CAS  PubMed  Google Scholar 

  • Sattler, R., Xiong, Z., Lu, W. Y., Hafner, M., MacDonald, J. F., & Tymianski, M. (1999). Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science, 284, 1845–1848.

    CAS  PubMed  Google Scholar 

  • Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., & Marsden, C. D. (1990a). Mitochondrial complex I deficiency in Parkinson’s disease. Journal of Neurochemistry, 54, 823–827.

    CAS  PubMed  Google Scholar 

  • Schapira, A. H., Mann, V. M., Cooper, J. M., Dexter, D., Daniel, S. E., Jenner, P., Clark, J. B., & Marsden, C. D. (1990b). Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. Journal of Neurochemistry, 55, 2142–2145.

    CAS  PubMed  Google Scholar 

  • Schewe, T. (1995). Molecular actions of ebselen – an antiinflammatory antioxidant. General Pharmacology, 26, 1153–1169.

    CAS  PubMed  Google Scholar 

  • Schmitz, D., Mellor, J., Frerking, M., & Nicoll, R. A. (2001). Presynaptic kainate receptors at hippocampal mossy fiber synapses. Proceedings of the National Academy of Sciences of the United States of America, 98, 11003–11008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoepp, D. D., Tizzano, J. P., Wright, R. A., & Fix, A. S. (1995). Reversible and irreversible neuronal injury induced by intrahippocampal infusion of the mGluR agonist 1S,3R-ACPD in the rat. Neurodegeneration, 4, 71–80.

    CAS  PubMed  Google Scholar 

  • Schrammel, A., Gorren, A. C., Schmidt, K., Pfeiffer, S., & Mayer, B. (2003). S-nitrosation of glutathione by nitric oxide, peroxynitrite, and (*)NO/O(2)(*-). Free Radical Biology & Medicine, 34, 1078–1088.

    CAS  Google Scholar 

  • Schulz, J. B., Henshaw, D. R., Jenkins, B. G., Ferrante, R. J., Kowall, N. W., Rosen, B. R., & Beal, M. F. (1994). 3-Acetylpyridine produces age-dependent neuronal lesions by an excitotoxic and free radical mediated mechanism. Journal of Cerebral Blood Flow and Metabolism, 14, 1024–1029.

    CAS  PubMed  Google Scholar 

  • Schwab, R. S., England, A. C., Poskranzer, D. C., & Young, R. R. (1969). Amantadine in the treatment of Parkinson’s disease. Journal of the American Medical Association, 208, 1168–1170.

    CAS  PubMed  Google Scholar 

  • Schwarcz, R., & Kohler, C. (1983). Differential vulnerability of central neurons of the rat to quinolinic acid. Neuroscience Letters, 38, 85–90.

    CAS  PubMed  Google Scholar 

  • Schwarcz, R., Whetsell, W. O., & Mangano, R. M. (1983). Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain. Science, 219, 316–318.

    CAS  PubMed  Google Scholar 

  • Seif el, N. M., Peruche, B., Rossberg, C., Rossberg, C., Mennel, H. D., & Krieglstein, J. (1990). Neuroprotective effect of memantine demonstrated in vivo and in vitro. European Journal of Pharmacology, 185, 19–24.

    Google Scholar 

  • Selkoe, D. J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature Supplement, 399, A23–A31.

    CAS  Google Scholar 

  • Sen, N., Hara, M. R., Ahmad, A. S., Cascio, M. B., Kamiya, A., Ehmsen, J. T., Agrawal, N., Hester, L., Doré, S., Snyder, S. H., & Sawa, A. (2009). GOSPEL: A neuroprotective protein that binds to GAPDH upon S-nitrosylation. Neuron, 63, 81–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sensi, S. L., Canzoniero, L. M., Yu, S. P., Ying, H. S., Koh, J. Y., Kerchner, G. A., & Choi, D. W. (1997). Measurement of intracellular free zinc in living cortical neurons: Routes of entry. The Journal of Neuroscience, 17, 9554–9564.

    CAS  PubMed  Google Scholar 

  • Sensi, S. L., Yin, H. Z., Carriedo, S. G., Rao, S. S., & Weiss, J. H. (1999). Preferential Zn2+ influx through Ca2+-permeable AMPA/kainate channels triggers prolonged mitochondrial superoxide production. Proceedings of the National Academy of Sciences of the United States of America, 96, 2414–2419.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw, P. J., Forrest, V., Ince, P. G., Richardson, J. P., & Wastell, H. J. (1995). Studies on cellular free radical protection mechanisms in the anterior horn from patients with amyotrophic lateral sclerosis. Neurodegeneration, 4, 209–216.

    CAS  PubMed  Google Scholar 

  • Sheardown, M. J., Nielsen, E. O., Hansen, A. J., Jacobsen, P., & Honoré, T. (1990). 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: A neuroprotectant for cerebral ischemia. Science, 247, 571–574.

    CAS  PubMed  Google Scholar 

  • Sheline, C. T., Behrens, M. M., & Choi, D. W. (2000). Zinc-induced cortical neuronal death: Contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. The Journal of Neuroscience, 20, 3139–3146.

    CAS  PubMed  Google Scholar 

  • Shuaib, A., Lees, K. R., Lyden, P., Grotta, J., Davalos, A., Davis, S. M., Diener, H. C., Ashwood, T., Wasiewski, W. W., Emeribe, U., & SAINT II Trial Investigators. (2007). NXY-059 for the treatment of acute ischemic stroke. The New England Journal of Medicine, 357, 562–571.

    CAS  PubMed  Google Scholar 

  • Singleton, R. H., & Povlishock, J. T. (2004). Identification and characterization of heterogeneous neuronal injury and death in regions of diffuse brain injury: Evidence for multiple independent injury phenotypes. The Journal of Neuroscience, 24, 3543–3553.

    CAS  PubMed  Google Scholar 

  • Snider, B. J., Gottron, F. J., & Choi, D. W. (1999). Apoptosis and necrosis in cerebrovascular disease. Annals of the New York Academy of Sciences, 893, 243–253.

    CAS  PubMed  Google Scholar 

  • Spencer, P. S. (1987). Guam ALS/parkinsonism-dementia: A long-latency neurotoxic disorder caused by “slow toxin(s)” in food? The Canadian Journal of Neurological Sciences, 14(Suppl 3), 347–357.

    CAS  PubMed  Google Scholar 

  • Spencer, P. S., Roy, D. N., Ludolph, A., Hugon, J., Dwivedi, M. P., & Schaumburg, H. H. (1986). Lathyrism: Evidence for the role of the neuroexcitatory amino acid BOAA. Lancet, 2, 1066–1067.

    CAS  PubMed  Google Scholar 

  • Spencer, P. S., Kisby, G. E., Ross, S. M., Roy, D. N., Hugon, J., Ludolph, A. C., & Nunn, P. B. (1993). Guam ALS-PDC: Possible causes. Science, 262, 825–826.

    CAS  PubMed  Google Scholar 

  • Srivastava, R., Brouillet, E., Beal, M. F., Storey, E., & Hyman, B. T. (1993). Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment. Neurobiology of Aging, 14, 295–301.

    CAS  PubMed  Google Scholar 

  • Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J., & Loscalzo, J. (1992). S-nitrosylation of proteins with nitric oxide: Synthesis and characterization of biologically active compounds. Proceedings of the National Academy of Sciences of the United States of America, 89, 444–448.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberg, G. K., George, C. P., DeLaPaz, R., Shibata, D. K., & Gross, T. (1988). Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits. Stroke, 19, 1112–1118.

    CAS  PubMed  Google Scholar 

  • Suh, S. W., Chen, J. W., Motamedi, M., Bell, B., Listiak, K., Pons, N. F., Danscher, G., & Frederickson, C. J. (2000). Evidence that synaptically-released zinc contributes to neuronal injury after traumatic brain injury. Brain Research, 852, 268–273.

    CAS  PubMed  Google Scholar 

  • Sun, H. S., Doucette, T. A., Liu, Y., Fang, Y., Teves, L., Aarts, M., Ryan, C. L., Bernard, P. B., Lau, A., Forder, J. P., Salter, M. W., Wang, Y. T., Tasker, R. A., & Tymianski, M. (2008). Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke, 39, 2544–2553.

    CAS  PubMed  Google Scholar 

  • Takahashi, M., Ni, J. W., Kawasaki-Yatsugi, S., Toya, T., Yatsugi, S. I., Shimizu-Sasamata, M., Koshiya, K., Shishikura, J. I., Sakamoto, S., & Yamaguchi, T. (1998). YM872, a novel selective alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist, reduces brain damage after permanent focal cerebral ischemia in cats. The Journal of Pharmacology and Experimental Therapeutics, 284, 467–473.

    CAS  PubMed  Google Scholar 

  • Tanabe, Y., Nomura, A., Masu, M., Shigemoto, R., Mizuno, N., & Nakanishi, S. (1993). Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. The Journal of Neuroscience, 13, 1372–1378.

    CAS  PubMed  Google Scholar 

  • Tanaka, K., Nagata, E., Suzuki, S., Dembo, T., Nogawa, S., & Fukuuchi, Y. (1999). Immunohistochemical analysis of cyclic AMP response element binding protein phosphorylation in focal cerebral ischemia in rats. Brain Research, 818, 520–526.

    CAS  PubMed  Google Scholar 

  • Tanaka, K., Nogawa, S., Ito, D., Suzuki, S., Dembo, T., Kosakai, A., & Fukuuchi, Y. (2000). Activated phosphorylation of cyclic AMP response element binding protein is associated with preservation of striatal neurons after focal cerebral ischemia in the rat. Neuroscience, 100, 345–354.

    CAS  PubMed  Google Scholar 

  • Tao, X., Finkbeiner, S., Arnold, D. B., Shaywitz, A. J., & Greenberg, M. E. (1998). Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron, 20, 709–726.

    CAS  PubMed  Google Scholar 

  • Taylor, D. J., Krige, D., Barnes, P. R., Kemp, G. J., Carroll, M. T., Mann, V. M., Cooper, J. M., Marsden, C. D., & Schapira, A. H. (1994). A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson’s disease. Journal of Neurological Sciences, 125, 77–81.

    CAS  Google Scholar 

  • Tenneti, L., & Lipton, S. A. (2000). Involvement of activated caspase-3-like proteases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. Journal of Neurochemistry, 74, 134–142.

    CAS  PubMed  Google Scholar 

  • Tenneti, L., D’Emilia, D. M., Troy, C. M., & Lipton, S. A. (1998). Role of caspases in N-methyl-d-aspartate-induced apoptosis in cerebrocortical neurons. Journal of Neurochemistry, 71, 946–959.

    CAS  PubMed  Google Scholar 

  • Terro, F., Lasort, M., Vlader, F., Ludolph, A., & Hugon, J. (1996). Antioxidant drugs block in vitro the neurotoxicity of CSF from patients with amyotrophic lateral sclerosis. Neuroreport, 7, 1970–1972.

    CAS  PubMed  Google Scholar 

  • Terry, R. D., & Davies, P. (1980). Dementia of the Alzheimer type. Annual Review of Neuroscience, 3, 77–95.

    CAS  PubMed  Google Scholar 

  • Thayer, S. A., & Wang, G. J. (1995). Glutamate-induced calcium loads: Effects on energy metabolism and neuronal viability. Clinical and Experimental Pharmacology and Physiology, 22, 303–304.

    CAS  PubMed  Google Scholar 

  • Tonder, N., Johansen, F. F., Frederickson, C. J., Zimmer, J., & Diemer, N. H. (1990). Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neuroscience Letters, 109, 247–252.

    CAS  PubMed  Google Scholar 

  • Traynelis, S. F., & Cull-Candy, S. G. (1990). Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature, 345, 347–350.

    CAS  PubMed  Google Scholar 

  • Turski, L., Bressler, K., Rettig, K. J., Loschmann, P. A., & Wachtel, H. (1991). Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature, 349, 414–418.

    CAS  PubMed  Google Scholar 

  • Tymianski, M., Charlton, M. P., Carlen, P. L., & Tator, C. H. (1993a). Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. The Journal of Neuroscience, 13, 2085–2104.

    CAS  PubMed  Google Scholar 

  • Tymianski, M., Wallace, M. C., Spigelman, I., Uno, M., Carlen, P. L., Tator, C. H., & Charlton, M. P. (1993b). Cell-permeant Ca2+-chelators reduce early excitotoxic and ischemic neuronal injury in vitro and in vivo. Neuron, 11, 221–235.

    CAS  PubMed  Google Scholar 

  • Urbanska, E., Ikonomidou, C., Sieklucka, M., & Turski, W. A. (1991). Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse, 9, 129–135.

    CAS  PubMed  Google Scholar 

  • van der Vliet, A., Hoen, P. A., Wong, P. S., Bast, A., & Cross, C. E. (1998). Formation of S-nitrosothiols via direct nucleophilic nitrosation of thiols by peroxynitrite with elimination of hydrogen peroxide. The Journal of Biological Chemistry, 273, 30255–30262.

    PubMed  Google Scholar 

  • Vignes, M., & Collingridge, G. L. (1997). The synaptic activation of kainate receptors. Nature, 388, 179–182.

    CAS  PubMed  Google Scholar 

  • Wachtel, H., Kunow, M., & Loschmann, P. A. (1992). NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy-piperazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats. Neuroscience Letters, 142, 179–182.

    CAS  PubMed  Google Scholar 

  • Wahl, F., Allix, M., Plotkine, M., & Boulu, R. G. (1993). Effect of riluzole on focal cerebral ischemia in rats. European Journal of Pharmacology, 230, 209–214.

    CAS  PubMed  Google Scholar 

  • Wahl, F., Renou, E., Mary, V., & Stutzmann, J. M. (1997). Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Research, 756, 247–255.

    CAS  PubMed  Google Scholar 

  • Walton, M. R., & Dragunow, M. (2000). Is CREB a key to neuronal survival? Trends in Neurosciences, 23, 48–53.

    CAS  PubMed  Google Scholar 

  • Wang, G. J., & Thayer, S. A. (1996). Sequestration of glutamate-induced Ca2+ loads by mitochondria in cultured rat hippocampal neurons. Journal of Neurophysiology, 76, 1611–1621.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Kim, N. S., Li, X., Greer, P. A., Koehler, R. C., Dawson, V. L., & Dawson, T. M. (2009). Calpain activation is not required for AIF translocation in PARP-1-dependent cell death (parthanatos). Journal of Neurochemistry, 110, 687–696.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wenk, G. L., Danysz, W., & Mobley, S. L. (1996). MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. European Journal of Pharmacology, 293, 267–270.

    Google Scholar 

  • Williams, K. (1997). Interactions of polyamines with ion channels. Biochemical Journal, 325(Pt 2), 289–297.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williams, T. L., Day, N. C., Kamboj, R. K., Ince, P. G., & Shaw, P. J. (1997). Calcium-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors: A molecular determinant of selective vulnerability in amyotrophic lateral sclerosis. Annals of Neurology, 35, 200–207.

    Google Scholar 

  • Wüllner, U., Young, A. B., Penney, J. B., & Beal, M. F. (1994). 3-Nitropropionic acid toxicity in the striatum. Journal of Neurochemistry, 63, 1772–1781.

    PubMed  Google Scholar 

  • Yamaguchi, T., Sano, K., Takakura, K., Saito, I., Shinohara, Y., Asano, T., & Yasuhara, H. (1998). Ebselen in acute ischemic stroke: A placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke, 29, 12–17.

    CAS  PubMed  Google Scholar 

  • Yamakura, F., Taka, H., Fujimura, T., & Murayama, K. (1998). Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. The Journal of Biological Chemistry, 273, 14085–14089.

    CAS  PubMed  Google Scholar 

  • Yokoyama, M., Koh, J., & Choi, D. W. (1986). Brief exposure to zinc is toxic to cortical neurons. Neuroscience Letters, 71, 351–355.

    CAS  PubMed  Google Scholar 

  • Young, A. B. (1990). What’s the excitement about excitatory amino acids in amyotrophic lateral sclerosis? Annals of Neurology, 28, 9–11.

    CAS  PubMed  Google Scholar 

  • Zadow, B., & Schmidt, W. J. (1994). The AMPA antagonists NBQX and GYKI 52466 do not counteract neuroleptic-induced catalepsy. Naunyn Schmiedeberg’s Archives of Pharmacology, 349, 61–65.

    CAS  PubMed  Google Scholar 

  • Zeevalk, G. D., & Nicklas, W. J. (1991). Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition. The Journal of Pharmacology and Experimental Therapeutics, 257, 870–878.

    CAS  PubMed  Google Scholar 

  • Zhang, J., Dawson, V. L., Dawson, T. M., & Snyder, S. H. (1994). Nitric oxide activation of poly(ADP-ribose)synthetase in neurotoxicity. Science, 263, 687–689.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Raghupathi, R., Saatman, K. E., Smith, D. H., Stutzmann, J. M., Wahl, F., & McIntosh, T. K. (1998). Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. Journal of Neuroscience Research, 52, 342–349.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Wang, H., Li, J., Jimenez, D. A., Levitan, E. S., Aizenman, E., & Rosenberg, P. A. (2004). Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. The Journal of Neuroscience, 24, 10616–10627.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zingarelli, B., O’Connor, M., Wong, H., Salzman, A. L., & Szabó, C. (1996). Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysaccharide. Journal of Immunology, 156, 350–358.

    CAS  Google Scholar 

  • Zipp, F., Baas, H., & Fischer, P. A. (1993). Lamotrigine–antiparkinsonian activity by blockade of glutamate release? Journal of Neural Transmission, 5, 67–75.

    CAS  PubMed  Google Scholar 

  • Zipp, F., Burklin, F., Stecker, K., Baas, H., & Fischer, P. A. (1995). Lamotrigine in Parkinson’s disease–a double blind study. Journal of Neural Transmission, 10, 199–206.

    CAS  PubMed  Google Scholar 

  • Zuddas, A., Oberto, G., Vaglini, F., Fascetti, F., Fornai, F., & Corsini, G. U. (1992). MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates. Journal of Neurochemistry, 59, 733–739.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chrysanthy Ikonomidou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Turski, G.N., Ikonomidou, C. (2014). Glutamate as a Neurotoxin. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_84

Download citation

Publish with us

Policies and ethics