Skip to main content

Topographic Solar Radiation Modeling for Environmental Applications

  • Reference work entry
  • First Online:
Solar Energy
  • 5450 Accesses

Definition of the Subject

Solar radiation exhibits strong spatial and temporal variations influenced by many factors. For example, basic patterns of seasonal and daily variations given by astronomic factors are modified by actual atmospheric conditions influencing absorption, scattering, and solar radiation spectrum. Such data offer some basic information about the available solar radiation. However, patterns at regional and local scales may significantly deviate from these general trends. Large land surface features may cause strong local radiation gradients, thus inducing specific microclimate and hydrological conditions. Consequently, in mountainous regions, topography plays a critical role in the spatial distribution of solar radiation incident on the surface.

Currently available solar radiation databases derived from ground or satellite measurements contain data with an insufficient level of detail that in most cases do not represent adequately the spatial variability in solar...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Geographic information system (GIS):

Any information system that is used to collect, store, process, and present geographic information. In a narrow sense it means a specific application software dealing with geographic information. In a broader sense, it includes software, hardware, data, and people.

Digital elevation model (DEM):

A digital representation of the land surface expressing a spatial distribution of elevations. It can be represented by a raster or vector data model.

Topography:

A study of Earth’s surface geometry. It is also known as geomorphometry, a science of quantitative land surface analysis. The land surface (relief, terrain) is characterized by a set of morphometric parameters including slope, aspect, curvatures, and other more complex parameters.

Solar radiation database:

A set of digital maps representing a spatial and temporal distribution of solar radiation and related meteorological data over a specific region.

Clear-sky radiation:

Solar radiation under clear-sky atmospheric conditions. The extraterrestrial solar radiation is attenuated only by air mass with atmospheric gases and aerosols.

Real-sky radiation:

Solar radiation under real-sky conditions, that is, including the cloudiness.

Linke turbidity factor:

A measure of solar beam radiation attenuation caused by water vapor and aerosol particles in the atmosphere.

Raster:

A GIS data model representing geographic phenomena as arrays of cells that store attribute values.

Viewshed:

A graph showing the angular distribution of sky visibility and obstruction at the location. It is calculated from a DEM by searching in a specified set of directions around the location.

Bibliography

  1. Scharmer K, Greif J (2000) The European Solar Radiation Atlas, vol 2, Database and Exploitation Software. Paris. Presses de l’École des Mines de Paris, France

    Google Scholar 

  2. Remund J, Kunz S, Lang R (1999) METEONORM: global meteorological database for solar energy and applied climatology, Solar Engineering Handbook, version 4.0. Meteotest, Bern

    Google Scholar 

  3. Hammer A, Heinemann D, Westerhellweg A, Ineichen P, Olseth JA, Skartveit A, Dumortier D, Fontoynont M, Wald L, Beyer HG, Reise Ch, Roche L, Page J (1998) Derivation of daylight and solar irradiance data from satellite observations. In: Proceedings of the 9th conference on satellite meteorology and oceanography, Paris, May 1998, pp 747–750

    Google Scholar 

  4. Šúri M, Huld TA, Dunlop ED (2005) PVGIS: a web-based solar radiation database for the calculation of PV potential in Europe. Int J Sustainable Energy 24:55–67

    Article  Google Scholar 

  5. Cottle HJ (1932) Vegetation on north and south slopes of mountains in south-western Texas. Ecology 13:121–134

    Article  Google Scholar 

  6. Wilson RG (1970) Topographic Influences on a Forest Microclimate. McGill University, Montreal, Canada

    Google Scholar 

  7. Halverson HG, Smith JL (1979) Solar radiation as a forest management tool: a primer of principles and application, General technical report PSW-33. The Forest Service of the US Department of Agriculture, Berkeley

    Google Scholar 

  8. Dozier J (1980) A clear-sky spectral solar radiation model for snow-covered mountainous terrain. Water Resour Res 16:709–718

    Article  Google Scholar 

  9. Gates DM (1980) Biophysical ecology. Springer, New York, pp 96–146

    Google Scholar 

  10. Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling: a review of hydrological, geomorphological and biological applications. Hydrol Process 11:47–54

    Google Scholar 

  11. Fu P, Rich PM (2000) A geometric solar radiation model with applications in agriculture and forestry. Comput Electron Agric 37:25–35

    Article  Google Scholar 

  12. Dubayah R, Rich PM (1995) Topographic solar radiation models for GIS. Int J Geogr Inf Syst 9:405–413

    Article  Google Scholar 

  13. Hetrick WA, Rich PM, Barnes FJ, Weiss SB (1993) GIS-based solar radiation flux models, American society for photogrammetry and remote sensing technical papers, vol 3, GIS photogrammetry and modeling. Wiley, New York, pp 132–143

    Google Scholar 

  14. Kumar L, Skidmore AK, Knowles E (1997) Modeling topographic variation in solar radiation in a GIS environment. Int J Geogr Inf Sci 11:475–497

    Article  Google Scholar 

  15. Fu P, Rich PM (2000) The solar analyst 1.0 user Manual. Helios Environmental Modeling Institute, Lawrence, KS

    Google Scholar 

  16. Wilson JP, Gallant JC (2000) Secondary topographic attributes. In: Wilson JP, Gallant JC (eds) Terrain analysis; principles and applications. Wiley, New York, pp 87–132

    Google Scholar 

  17. McKenney DW, Mackey BG, Zavitz BL (1999) Calibration and sensitivity analysis of a spatially-distributed solar radiation model. Int J Geogr Inf Sci 13:49–65

    Article  Google Scholar 

  18. Hofierka J (1997) Direct solar radiation modelling within an open GIS environment. In: Proceedings of the joint European GI conference, Vienna, pp 575–584

    Google Scholar 

  19. Neteler M, Mitasova H (2004) Open Source GIS: a GRASS GIS approach, 2nd edn. Kluwer, Boston

    Google Scholar 

  20. Šúri M, Hofierka J (2004) A new GIS-based solar radiation model and its application to photovoltaic assessments. Trans GIS 8:175–190

    Article  Google Scholar 

  21. Hofierka J, Kaňuk J (2009) Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renewable Energy 34:2206–2214

    Article  Google Scholar 

  22. Muneer T (2004) Solar radiation and daylight models. Elsevier, Amsterdam

    Google Scholar 

  23. Hengl T, Reuter HI (2009) Geomorphometry: concepts, software, applications, vol 33, Developments in Soil Science. Elsevier, Amsterdam

    Google Scholar 

  24. Hofierka J, Cebecauer T (2008) Spatially distributed assessment of solar resources for energy applications in Slovakia. Acta Facultatis Studiorum Humanitatis et Naturae Universitatis Prešoviensis. Prírodné vedy Folia Geogr 12:97–114

    Google Scholar 

  25. Perez R, Seals R, Ineichen P, Steward R, Menicucci D (1987) A new simplified version of the Perez diffuse irradiance model for tilted surfaces. Sol Energy 39:221–231

    Article  Google Scholar 

  26. Rigollier Ch, Bauer O, Wald L (2000) On the clear sky model of the ESRA – European Solar radiation Atlas – with respect to the Heliosat method. Sol Energy 68:33–48

    Article  Google Scholar 

  27. Krcho J (1990) Morfometrická analýza a digitálne modely georeliéfu. Bratislava, Veda (in Slovak)

    Google Scholar 

  28. Jenčo M (1992) Distribúcia priameho slnečného žiarenia na reoreliéfe a jej modelovanie pomocou komplexného digitálneho modelu reliéfu. Geografický časopis 44:342–355 (in Slovak)

    Google Scholar 

  29. Gruter JW (1984) Radiation nomenclature. 2nd solar energy programme of the CEC, Project F, Solar radiation data. CEC, Brussels

    Google Scholar 

  30. Muneer T (1990) Solar radiation model for Europe. Build Serv Eng Res Technol 11:153–163

    Article  Google Scholar 

  31. Brest CL, Goward SN (1987) Deriving surface albedo measurements from narrow band satellite data. Intl J Remote Sens 8:351–367

    Article  Google Scholar 

  32. Dubayah R (1992) Estimating net solar radiation using Landsat Thematic Mapper and digital elevation data. Water Resour Res 28:2469–2484

    Article  Google Scholar 

  33. Duguay CR, LeDrew EF (1992) Estimating surface reflectance and Albedo from LANDSAT-5 thematic mapper over rugged terrain. Photogramm Eng Remote Sens 57:551–558

    Google Scholar 

  34. Dubayah R, Loechel S (1997) Modeling topographic solar radiation using GOES data. J Appl Meteorol 36:141–154

    Article  Google Scholar 

  35. Becker S (2001) Calculation of direct solar and diffuse radiation in Israel. Int J Climatol 21:1561–1576

    Article  Google Scholar 

  36. Kitler R, Mikler J (1986) Základy využívania slnečného žiarenia. Bratislava, Veda (in Slovak)

    Google Scholar 

  37. Beyer HG, Costanzo C, Heinemann D (1996) Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol Energy 56:207–212

    Article  Google Scholar 

  38. Rigollier Ch, Lefèvre M, Wald L (2001) Heliosat version 2, integration and exploitation of networked solar radiation databases for environment monitoring (SoDa), European commission project no. IST-1999-122245, report. http://www.helioclim.org/publications/heliosat2_d3.2.pdf. Accessed 14 December 2010

  39. Kasten F, Czeplak G (1980) Solar and terrestrial radiation dependent on the amount and type of cloud. Sol Energy 24:177–189

    Article  Google Scholar 

  40. Cano D, Monget JM, Albuisson M, Guillard H, Regas N, Wald L (1986) A method for the determination of the global solar radiation from meteorological satellite data. Sol Energy 37:31–39

    Article  Google Scholar 

  41. Hofierka J, Šúri M (2002) The solar radiation model for Open source GIS: implementation and applications. In: Ciolli M, Zatelli P (eds) Proceedings of the open source free software GIS – GRASS users conference, Trento, Italy, 11–13 Sept 2002, CD-ROM

    Google Scholar 

  42. Šúri M, Huld TA, Dunlop ED, Ossenbrink HA (2007) Potential of solar electricity generation in the European Union member states and candidate countries. Sol Energy 81:1295–1305

    Article  Google Scholar 

  43. Wald L (2006) Available databases, products and services. In: Dunlop ED, Wald L, Šúri M (eds) Solar energy resources management for electricity generation from local level to global scale. Nova Science Publishers, New York, pp 29–41

    Google Scholar 

  44. Hofierka J, Cebecauer T (2007) Priestorová a časová distribúcia slnečného žiarenia na georeliéfe Slovenska. In: Střelcová K, Škvarenina J, Blaženec M (eds) Bioclimatology and natural hazards, CD-ROM proceedings of the international scientific conference, Polana nad Detvou, Slovak Bioclimatological Society, Technical University Zvolen (in Slovak), Slovakia, 17–20 Sept 2007

    Google Scholar 

  45. Zyl JJ (2001) The shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronaut 48:559–565

    Article  Google Scholar 

  46. Hutchinson MF, Booth TH, McMahon LP, Nin HA (1984) Estimating monthly mean values of daily total solar radiation for Australia. Sol Energy 32:277–290

    Article  Google Scholar 

  47. Hulme M, Conway D, Jones PD, Jiang T, Barrow EM, Turney C (1995) A 1961-1990 climatology for Europe for climate change modelling and impact applications. Int J Climatol 15:1333–64

    Article  Google Scholar 

  48. Zelenka A, Czeplak G, D’Agostino V, Josefson W, Maxwell E, Perez R (1992) Techniques for Supplementing Solar Radiation Network Data, Technical Report, International Energy Agency, # IEA-SHCP-9D-1. Swiss Meteorological Institute, Switzerland

    Google Scholar 

  49. D’Agostino V, Zelenka A (1992) Supplementing solar radiation network data by co-kriging with satellite images. Int J Climatol 12:749–761

    Article  Google Scholar 

  50. Beyer HG, Czeplak G, Terzenbach U, Wald L (1997) Assessment of the method used to construct clearness index maps for the new European solar radiation atlas (ESRA). Sol Energy 61:389–397

    Article  Google Scholar 

  51. Hofierka J, Parajka P, Mitasova M, Mitas L (2002) Multivariate interpolation of precipitation using regularized spline with tension. Trans GIS 6:135–150

    Article  Google Scholar 

  52. Remund J, Wald L, Lefèvre M, Ranchin T, Page J (2003) Worldwide linke turbidity information. In: Proceedings of ISES solar world congress on solar energy for a sustainable future, Göteborg, Sweden, 14–20 June 2003

    Google Scholar 

  53. Gueymard CA (2008) Fixed or tracking solar collectors? Helping the decision process with the solar resource enhancement factor. In: Proceedings of optical modeling and measurements for solar energy systems II conference, SPIE, vol 7046, San Diego

    Google Scholar 

  54. Šúri M, Huld TA, Dunlop ED, Hofierka J (2007) Solar resource modelling for energy applications. In: Peckham RJ, Jordan G (eds) Digital terrain modelling, development and applications in a policy support environment, Series lecture notes in geoinformation and cartography. Springer, Heidelberg, pp 259–273

    Google Scholar 

  55. Ruiz-Arias JA, Cebecauer T, Tovar-Pescador J, Šúri M (2010) Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model. Sol Energy 84:1644–1657

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education of the Slovak Republic under Grant VEGA 1/0355/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hofierka Jaroslav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Jaroslav, H. (2013). Topographic Solar Radiation Modeling for Environmental Applications. In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_452

Download citation

Publish with us

Policies and ethics