Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Tuff Ring

  • Petr BrožEmail author
  • Károly Németh
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_403


Small circular cones with low profile flanks and with wide relatively shallow central crater with a relatively simple map view outline.


In a broad sense, tuff rings commonly refer to any ring-like low-profile small volume volcanic edifices with wide craters where their crater floor is above the syn-eruptive surface.

Tuff ring craters are typically surrounded by pyroclastic beds dip radially away from the crater in low angle (<25° on Earth) and rarely traceable more than a km away from the crater rim (Kereszturi and Németh 2013; Németh 2010a; Vespermann and Schmincke 2000; Wohletz and Sheridan 1983).

Tuff ring crater rim deposits are dominated by dune-bedded, laminar tuff beds that are intercalated with coarser grained tuff brecias and lapilli tuffs in proximal to the vent that beds are laterally discontinuous (Heiken 1971; Kereszturi and Németh 2013; Németh et al. 2012a; Wohletz and Sheridan 1983).


Tuff rings have normally low topographic profiles and...

This is a preview of subscription content, log in to check access.


  1. Affleck DK, Cassidy J, Locke CA (2001) Te Pouhawaiki Volcano and pre-volcanic topography in central Auckland: volcanological and hydrogeological implications. New Zeal J Geol Geophys 44(2):313–321CrossRefGoogle Scholar
  2. Allen SR, Bryner VF, Smith IEM, Ballance PF (1996) Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand. N.Z. J Geol Geophys 39:309–327CrossRefGoogle Scholar
  3. Austin-Erickson A, Ort MH, Carrasco-Nunez G (2011) Rhyolitic phreatomagmatism explored: tepexitl tuff ring (Eastern Mexican Volcanic Belt). J Volcanol Geotherm Res 201(1–4):325–341CrossRefGoogle Scholar
  4. Brand BD, White CM, Anonymous (2004) Base-surge mechanics and structures, an example from Sinker Butte, ID, western Snake River plain. Abstracts with Programs – Geol Soc Am 36(4):84–84Google Scholar
  5. Brooker MR, Houghton BF, Wilson CJN, Gamble JA (1993) Pyroclastic phases of a rhyolitic dome-building eruption; Puketarata tuff ring, Taupo volcanic zone, New Zealand. Bull Volcanol 55(6):395–406CrossRefGoogle Scholar
  6. Brown RJ, Kokelaar BP, Branney MJ (2007) Widespread transport of pyroclastic density currents from a large silicic tuff ring: the Glaramara tuff, Scafell caldera, English Lake District, UK. Sedimentology 54(5):1163–1190CrossRefGoogle Scholar
  7. Brož P, Hauber E (2013) Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J Geophys Res Planet 118:1656–1675. doi:10.1002/jgre.20120Google Scholar
  8. Buettner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geophys Res 107(B11):14–14Google Scholar
  9. Cagnoli B, Ulrych TJ (2001) Ground penetrating radar images of unexposed climbing dune- forms in the Ubehebe hydrovolcanic field (Death Valley, California). J Volcanol Geotherm Res 109(4):279–298CrossRefGoogle Scholar
  10. Cassidy J, France SJ, Locke CA (2007) Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand. J Volcanol Geotherm Res 159(1–3):153–163CrossRefGoogle Scholar
  11. Chough SK, Sohn YK (1990) Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 37:1115–1135CrossRefGoogle Scholar
  12. Dellino P, Liotino G (2002) The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance. J Volcanol Geotherm Res 113(1–2):1–18CrossRefGoogle Scholar
  13. Dellino P, Isaia R, La Volpe L, Orsi G (2004a) Interaction between particles transported by fallout and surge in the deposits of the Agnano-Monte Spina eruption (Campi Flegrei, Southern Italy). J Volcanol Geotherm Res 133(1–4):193–210CrossRefGoogle Scholar
  14. Dellino P, Isaia R, Veneruso M (2004b) Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy). J Volcanol Geotherm Res 133(1–4):211–228CrossRefGoogle Scholar
  15. Eichelberger JC, Vogel TA, Younker LW, Miller CD, Heiken GH, Wohletz KH (1988) Structure and stratigraphy beneath a young phreatic vent: South Inyo Crater, Long Valley Caldera, California. J Geophys Res 93(B11):13208–13220CrossRefGoogle Scholar
  16. Gencalioglu-Kuscu G, Atilla C, Cas RAF, Kuscu I (2007) Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). J Volcanol Geotherm Res 159(1–3):198–209CrossRefGoogle Scholar
  17. Gutmann JT (2002) Strombolian and effusive activity as precursors to phreatomagmatism; eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J Volcanol Geotherm Res 113(1–2):345–356CrossRefGoogle Scholar
  18. Gutmann JT, Sheridan M (1978) Geology ofthe Pinacate volcanic field. Arizona Bur Geol Mining Tech Spec Paper 2:47–59Google Scholar
  19. Heiken GH (1971) Tuff rings: examples from the Fort Rock-Christmas Lake Valley Basin, South-Central Oregon. J Geophys Res 76(23):5615–5626CrossRefGoogle Scholar
  20. Houghton BF, Schmincke HU (1989) Rothenberg cinder cone, East Eifel; a complex strombolian and phreatomagmatic volcano. Bull Volcanol 52(1):28–48CrossRefGoogle Scholar
  21. Houghton BF, Wilson CJN, Smith IEM (1999) Shallow-seated controls on styles of explosive basaltic volcanism; a case study from New Zealand. J Volcanol Geotherm Res 91(1):97–120Google Scholar
  22. Kereszturi G, Németh K (2013) Monogenetic basaltic volcanoes: genetic classification, growth, geomorphology and degradation. In: Németh K (ed) Updates in volcanology – new advances in understanding volcanic systems. inTech Open, Rijeka. http://dx.doi.org/10.5772/51387
  23. Lajoie J, Lanzafame G, Rossi PL, Tranne CA (1992) Lateral facies variations in hydromagmatic pyroclastic deposits at Linosa, Italy. J Volcanol Geotherm Res 54:135–143CrossRefGoogle Scholar
  24. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274CrossRefGoogle Scholar
  25. Martin U, Németh K (2005) Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyó volcano (western Hungary). J Volcanol Geotherm Res 147(3–4):342–356CrossRefGoogle Scholar
  26. Martin U, Nemeth K (2006) Eruptive mechanism of phreatomagmatic volcanoes from the Pinacate volcanic field: comparison between Crater Elegante and Cerro Colorado. Mexico Z dt Ges Geowiss 157(3):451–466Google Scholar
  27. McGill GE (2002) The small domes and pits of Cydonia Mensae and adjacent Acidalia Planitia, Mars: implications for the role of near-surface water or ice. Lunar Planet Sci XXXIII, abstract #1126, HoustonGoogle Scholar
  28. Németh K (2010a) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. Geol Soc Am Special Paper 470:43–66CrossRefGoogle Scholar
  29. Németh K (2010b) Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation. Central Eur J Geosci 2(3):399–419Google Scholar
  30. Németh K, Cronin S, Haller MJ, Brenna M, Csillag G (2010) Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields. Central Eur J Geosci 2(3):339–361Google Scholar
  31. Németh K, Cronin SJ, Smith IEM, Flores JA (2012a) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74(9):2121–2137CrossRefGoogle Scholar
  32. Németh K, Risso C, Nullo F, Smith IEM, Pecskay Z (2012b) Facies architecture of an isolated long-lived, nested polygenetic silicic tuff ring erupted in a braided river system: the Los Loros volcano, Mendoza, Argentina. J Volcanol Geotherm Res 239:33–48CrossRefGoogle Scholar
  33. Risso C, Németh K, Combina AM, Nullo F, Drosina M (2008) The role of phreatomagmatism in a Plio-Pleistocene high-density cinder cone field: Llancanelo Volcanic Field (Mendoza), Argentina. J Volcanol Geotherm Res 169(1–2):61–86CrossRefGoogle Scholar
  34. Rottas KM, Houghton BF (2012) Structure, stratigraphy, and eruption dynamics of a young tuff ring: Hanauma Bay, O’ahu, Hawai’i. Bull Volcanol 74(7):1683–1697CrossRefGoogle Scholar
  35. Schmincke H-U, Fisher RV, Waters A (1973) Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany. Sedimentology 20:553–574CrossRefGoogle Scholar
  36. Sohn YK, Chough SK (1989) Depositional processes of the Suwolbong Tuff Ring, Cheju Island (Korea). Sedimentology 36(5):837–855CrossRefGoogle Scholar
  37. Stroncik NA, Schmincke HU (2002) Palagonite – a review. Int J Earth Sci 91(4):680–697CrossRefGoogle Scholar
  38. Tait MA, Cas RAF, Viramonte JG (2009) The origin of an unusual tuff ring of perlitic rhyolite pyroclasts: the last explosive phase of the Ramadas Volcanic Centre, Andean Puna, Salta, NW Argentina. J Volcanol Geotherm Res 183(1–2):1–16CrossRefGoogle Scholar
  39. Vazquez JA, Ort MH (2006) Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA. J Volcanol Geotherm Res 154(3–4):222–236CrossRefGoogle Scholar
  40. Vespermann D, Schmincke H-U (2000) Cinder cones and tuff rings. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic, San Diego, pp 683–694Google Scholar
  41. White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201(1–4):1–29CrossRefGoogle Scholar
  42. Williams DA, Fagents SA, Greeley R, McHone JF (2011) Field exercises in the Pinacate volcanic field, Mexico; an analog for planetary volcanism. Special Paper Geol Soc Am 483:449–464CrossRefGoogle Scholar
  43. Wohletz KH, Sheridan MF (1983) Hydrovolcanic explosions II. Evolution of basaltic tuff rings and tuff cones. Am J Sci 283:385–413CrossRefGoogle Scholar
  44. Yingst RA, Schmidt ME, Lentz RCF (2009) Observations of a potential Mars analog at the microscale using rover-inspired methods: a 10-sol observation of Fort Rock tuff ring. J Geophys Res 114(E06004). doi:10.1029/2008JE003223Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Geophysics, Academy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Institute of Agriculture and Environment, Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand