Mathematics of Complexity and Dynamical Systems

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Control of Non-linear Partial Differential Equations

  • Fatiha Alabau‐Boussouira
  • Piermarco Cannarsa
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1806-1_8

Article Outline

Glossary

Definition of the Subject

Introduction

Controllability

Stabilization

Optimal Control

Future Directions

Bibliography

Keywords

Optimal Control Problem Jacobi Equation Exact Controllability Degenerate Parabolic Equation Distribute Parameter System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    Alabau F (1999) Stabilisation frontière indirecte de systèmes faiblement couplés. C R Acad Sci Paris Sér I 328:1015–1020MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Alabau F (2002) Indirect boundary stabilization of weakly coupled systems. SIAM J Control Optim 41(2):511–541MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Alabau‐Boussouira F (2003) A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J Control Optim 42(3):871–906Google Scholar
  4. 4.
    Alabau‐Boussouira F (2004) A general formula for decay rates of nonlinear dissipative systems. C R Math Acad Sci Paris 338:35–40Google Scholar
  5. 5.
    Alabau‐Boussouira F (2005) Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl Math Optim 51(1):61–105Google Scholar
  6. 6.
    Alabau‐Boussouira F (2006) Piecewise multiplier method and nonlinear integral inequalities for Petrowsky equations with nonlinear dissipation. J Evol Equ 6(1):95–112Google Scholar
  7. 7.
    Alabau‐Boussouira F (2007) Asymptotic behavior for Timoshenko beams subject to a single nonlinear feedback control. NoDEA 14(5–6):643–669Google Scholar
  8. 8.
    Alabau F, Cannarsa P, Komornik V (2002) Indirect internal damping of coupled systems. J Evol Equ 2:127–150MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Alabau‐Boussouira F, Cannarsa P, Fragnelli G (2006) Carleman estimates for degenerate parabolic operators with applications to null controllability. J Evol Equ 6:161–204Google Scholar
  10. 10.
    Alabau‐Boussouira F, Cannarsa P, Sforza D (2008) Decay estimates for second order evolution equations with memory. J Funct Anal 254(5):1342–1372Google Scholar
  11. 11.
    Ammari K, Tucsnak M (2001) Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM Control Optim Calc Var 6:361–386MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ammar‐Khodja F, Bader A, Benabdallah A (1999) Dynamic stabilization of systems via decoupling techniques. ESAIM Control Optim Calc Var 4:577–593 Google Scholar
  13. 13.
    Barbu V (2003) Feedback stabilization of Navier–Stokes equations. ESAIM Control Optim Calc Var 9:197–206MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Barbu V Da Prato G (1983) Hamilton Jacobi equations in Hilbert spaces. Pitman, LondonzbMATHGoogle Scholar
  15. 15.
    Barbu V, Lasiecka I, Triggiani R (2006) Tangential boundary stabilization of Navier–Stokes equations. Mem Amer Math Soc 181(852):128MathSciNetGoogle Scholar
  16. 16.
    Barbu V, Triggiani R (2004) Internal stabilization of Navier–Stokes equations with finite‐dimensional controllers. Indiana Univ Math J 53(5):1443–1494MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bardos C, Lebeau G, Rauch R (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30:1024–1065MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Bátkai A, Engel KJ, Prüss J, Schnaubelt R (2006) Polynomial stability of operator semigroups. Math Nachr 279(13–14):1425–1440Google Scholar
  19. 19.
    Beauchard K (2005) Local controllability of a 1-D Schödinger equation. J Math Pures Appl 84(7):851–956MathSciNetzbMATHGoogle Scholar
  20. 20.
    Bellman R (1957) Dynamic Programming. Princeton University Press, PrincetonzbMATHGoogle Scholar
  21. 21.
    Benabdallah A, Dermenjian Y, Le Rousseau J (2007) Carleman estimates for the one‐dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem. J Math Anal Appl 336(2):865–887MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Bensoussan A, Da Prato G, Delfour MC, Mitter SK (1993) Representation and Control of Infinite Dimensional Systems. Systems and Control: Foundations and applications, Birkhäuser, BostonCrossRefGoogle Scholar
  23. 23.
    Beyrath A (2001) Stabilisation indirecte localement distribué de systèmes faiblement couplés. C R Acad Sci Paris Sér I Math 333(5):451–456MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Beyrath A (2004) Indirect linear locally distributed damping of coupled systems. Bol Soc Parana Mat 22(2):17–34MathSciNetzbMATHGoogle Scholar
  25. 25.
    Burq N, Gérard P (1997) Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C R Acad Sci Paris Sér I Math 325(7):749–752Google Scholar
  26. 26.
    Burq N, Hitrik M (2007) Energy decay for damped wave equations on partially rectangular domains. Math Res Lett 14(1):35–47MathSciNetzbMATHGoogle Scholar
  27. 27.
    Burq N, Lebeau G (2001) Mesures de défaut de compacité, application au système de Lamé. Ann Sci École Norm Sup (4) 34(6):817–870MathSciNetGoogle Scholar
  28. 28.
    Cannarsa P (1989) Regularity properties of solutions to Hamilton–Jacobi equations in infinite dimensions and nonlinear optimal control. Diff Integral Equ 2:479–493MathSciNetzbMATHGoogle Scholar
  29. 29.
    Cannarsa P, Da Prato G (1990) Some results on non‐linear optimal control problems and Hamilton–Jacobi equations in infinite dimensions. J Funct Anal 90:27–47MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Cannarsa P, Gozzi F, Soner HM (1991) A boundary value problem for Hamilton–Jacobi equations in Hilbert spaces. Applied Math Optim 24:197–220MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Cannarsa P, Gozzi F, Soner HM (1993) A dynamic programming approach to nonlinear boundary control problems of parabolic type. J Funct Anal 117:25–61MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Cannarsa P, Di Blasio G (1995) A direct approach to infinite dimensional Hamilton–Jacobi equations and applications to convex control with state constraints. Differ Integral Equ 8:225–246zbMATHGoogle Scholar
  33. 33.
    Cannarsa P, Tessitore ME (1996) Infinite dimensional Hamilton–Jacobi equations and Dirichlet boundary control problems of parabolic type. SIAM J Control Optim 34:1831–1847MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Cannarsa P, Komornik V, Loreti P (2002) One-sided and internal controllability of semilinear wave equations with infinitely iterated logarithms. Discret Contin Dyn Syst 8(3):745–756MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Cannarsa P, Martinez P, Vancostenoble J (2004) Persistent regional null controllability for a class of degenerate parabolic equations. Commun Pure Appl Anal 3(4):607–635MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Cannarsa P, Martinez P, Vancostenoble (2005) Null Controllability of degenerate heat equations. Adv Differ Equ 10(2):153–190MathSciNetzbMATHGoogle Scholar
  37. 37.
    Cavalcanti MM, Oquendo HP (2003) Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim 42:1310–1324MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Chen G (1981) A note on boundary stabilization of the wave equation. SIAM J Control Optim 19:106–113MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Chueshov I, Lasiecka I, Toundykov D (2008) Long-term dynamics of semilinear wave equation with nonlinear localized interior damping and a source term of critical exponent. Discret Contin Dyn Syst 20(3):459–509MathSciNetzbMATHGoogle Scholar
  40. 40.
    Conrad F, Rao B (1993) Decay of solutions of the wave equation in a star‐shaped domain with nonlinear boundary feedback. Asymptot Anal 7:159–177MathSciNetzbMATHGoogle Scholar
  41. 41.
    Conrad F, Pierre (1994) Stabilization of second order evolution equations by unbounded nonlinear feedback. Ann Inst H Poincaré Anal Non Linéaire 11(5):485–515, Asymptotic Anal 7:159–177Google Scholar
  42. 42.
    Coron JM (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Signals Syst 5(3):295–312MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Coron JM (2007) Control and nonlinearity. Mathematical surveys and monographs vol 136, Providence, RI: xiv+426Google Scholar
  44. 44.
    Coron JM, Trélat E (2004) Global steady‐state controllability of one‐dimensional semilinear heat equations. SIAM J Control Optim 43(2):549–569Google Scholar
  45. 45.
    Crandall MG, Lions PL (1985) Hamilton Jacobi equation in infinite dimensions I: Uniqueness of viscosity solutions. J Funct Anal 62:379–396MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Crandall MG, Lions PL (1986) Hamilton Jacobi equation in infinite dimensions II: Existence of viscosity solutions. J Funct Anal 65:368–425MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Crandall MG, Lions PL (1986) Hamilton Jacobi equation in infinite dimensions III. J Funct Anal 68:214–247MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Crandall MG, Lions PL (1990) Hamilton Jacobi equation in infinite dimensions IV: Hamiltonians with unbounded linear terms. J Funct Anal 90:237–283MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Crandall MG, Lions PL (1991) Hamilton Jacobi equation in infinite dimensions V: Unbounded linear terms and B‑continuous solutions. J Funct Anal 97:417–465MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Curtain RF, Weiss G (1989) Well posedness of triples of operators (in the sense of linear systems theory). Control and Estimation of Distributed Parameter Systems (Vorau, 1988). Internat. Ser. Numer. Math., vol. 91, Birkhäuser, BaselGoogle Scholar
  51. 51.
    Curtain RF, Zwart H (1995) An introduction to infinite‐dimensional linear systems theory. Texts in Applied Mathematics, vol 21. Springer, New YorkCrossRefGoogle Scholar
  52. 52.
    Da Prato G, Frankowska H (2007) Stochastic viability of convex sets. J Math Anal Appl 333(1):151–163MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Dafermos CM(1970) Asymptotic stability inviscoelasticity. Arch Ration Mech Anal 37:297–308MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Dafermos CM (1970) An abstract Volterra equation with applications to linear viscoelasticity. J Differ Equ 7:554–569MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Engel KJ, R Nagel R (2000) One‐parameter semigroups for linear evolution equations. Springer, New YorkzbMATHGoogle Scholar
  56. 56.
    Eller M, Lagnese JE, Nicaise S (2002) Decay rates for solutions of a Maxwell system with nonlinear boundary damping. Comp Appl Math 21:135–165MathSciNetzbMATHGoogle Scholar
  57. 57.
    Fabre C, Puel J-P, Zuazua E (1995) Approxiamte controllability of the semilinear heat equation. Proc Roy Soc Edinburgh Sect A 125(1):31–61MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Fattorini HO, Russell DL (1971) Exact controllability theorems for linear parabolic equations in one space dimension. Arch Rat Mech Anal 4:272–292MathSciNetGoogle Scholar
  59. 59.
    Fattorini HO (1998) Infinite Dimensional Optimization and Control theory. Encyclopedia of Mathematics and its Applications, vol 62. Cambridge University Press, CambridgeGoogle Scholar
  60. 60.
    Fattorini HO (2005) Infinite dimensional linear control systems. North‐Holland Mathematics Studies, vol 201. Elsevier Science B V, AmsterdamGoogle Scholar
  61. 61.
    Fernández‐Cara E, Zuazua E (2000) Null and approximate controllability for weakly blowing up semilinear heat equations. Ann Inst H Poincaré Anal Non Linéaire 17(5):583–616Google Scholar
  62. 62.
    Fernández‐Cara E, Zuazua E (2000) The cost approximate controllability for heat equations: The linear case. Adv Differ Equ 5:465–514Google Scholar
  63. 63.
    Fernández‐Cara E, Guerrero S, Imanuvilov OY, Puel J-P (2004) Local exact controllability of the Navier–Stokes system. J Math Pures Appl 83(9–12):1501–1542Google Scholar
  64. 64.
    Fursikov A (2000) Optimal control of distributed systems. Theory and applications. Translation of Mathematical Monographs, vol 187. American Mathematical Society, ProvidenceGoogle Scholar
  65. 65.
    Fursikov A, Imanuvilov OY (1996) Controllability of evolution equations. Lecture Notes, Research Institute of Mathematics, Seoul National University, Seoul Google Scholar
  66. 66.
    Gibson JS (1980) A note on stabilization of infinite dimensional linear oscillators by compact linear feedback. SIAM J Control Optim 18:311–316MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Giorgi C, Naso MG, Pata V (2005) Energy decay of electromagnetic systems with memory. Math Models Methods Appl Sci 15(10):1489–1502MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Glass O (2000) Exact boundary controllability of 3-D Euler equation. ESAIM Control Optim Calc Var 5:1–44MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Glass O (2007) On the controllability of the 1-D isentropic Euler equation. J Eur Math Soc (JEMS) 9(3):427–486MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Guerrero S (2007) Local controllability to the trajectories of the Navier–Stokes system with nonlinear Navier‐slip boundary conditions. ESAIM Control Optim Calc Var 12(3):484–544MathSciNetCrossRefGoogle Scholar
  71. 71.
    Haraux A (1978) Semi‐groupes linéaires et équations d’évolution linéaires périodiques. Publication du Laboratoire d’Analyse Numérique no 78011. Université Pierre et Marie Curie, ParisGoogle Scholar
  72. 72.
    Haraux A (1989) Une remarque sur la stabilisation de certains systèmes du deuxième ordre en temps. Portugal Math 46(3):245–258MathSciNetzbMATHGoogle Scholar
  73. 73.
    Ho LF (1986) Observabilité frontière de l’équation des ondes. C R Acad Sci Paris Sér I Math 302(12):443–446zbMATHGoogle Scholar
  74. 74.
    Komornik V (1994) Exact Controllability and Stabilization. The Multiplier Method. Collection RMA, vol 36. Masson–John Wiley, Paris–ChicesterGoogle Scholar
  75. 75.
    Komornik V, Loreti P (2005) Fourier series in control theory. Springer, New YorkzbMATHGoogle Scholar
  76. 76.
    Komornik V, Zuazua E (1990) A direct method for the boundary stabilization of the wave equation. J Math Pures Appl 69:33–54MathSciNetzbMATHGoogle Scholar
  77. 77.
    Lasiecka I, Lions J-L, Triggiani R (1986) Nonhomogeneous boundary value problems for second order hyperbolic operators. J Math Pures Appl 65(2):149–192MathSciNetzbMATHGoogle Scholar
  78. 78.
    Lasiecka I, Tataru D (1993) Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping. Differ Integral Equ 8:507–533MathSciNetGoogle Scholar
  79. 79.
    Lasiecka I, Triggiani R (1991) Differential and algebraic Riccati equations with application to boundary/point control problems: continuous theory and approximation theory. Lecture Notes in Control & Inform Sci, vol 164. Springer, BerlinCrossRefGoogle Scholar
  80. 80.
    Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. I. Encyclopedia of Mathematics and its Applications, vol 74. Cambridge University Press, CambridgeGoogle Scholar
  81. 81.
    Lasiecka I, Triggiani R (2000) Control theory for partial differential equations: continuous and approximation theories. II. Encyclopedia of Mathematics and its Applications, vol 75. Cambridge University Press, CambridgeGoogle Scholar
  82. 82.
    Le Rousseau J (2007) Carleman estimates and controllability results for the one‐dimensional heat equation with BV coefficients. J Differ Equ 233(2):417–447zbMATHCrossRefGoogle Scholar
  83. 83.
    Lebeau G, Robbiano L (1995) Exact control of the heat equation. Comm Partial Differ Equ 20(1–2):335–356MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Li X, Yong J (1995) Optimal control of infinite dimensional systems. Systems & Control: Foundations & Applications. Birkhäuser, BostonCrossRefGoogle Scholar
  85. 85.
    Lions J-L (1971) Optimal control of systems governed by partial differential equations. Springer, New-YorkGoogle Scholar
  86. 86.
    Lions J-L (1988) Contrôlabilité exacte et stabilisation de systèmes distribués I-II. Masson, ParisGoogle Scholar
  87. 87.
    Liu K (1997) Locally distributed control and damping for the conservative systems. SIAM J Control Optim 35:1574–1590MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Liu Z, Zheng S (1999) Semigroups associated with dissipative systems. Chapman Hall CRC Research Notes in Mathematics, vol 398. Chapman Hall/CRC, Boca RatonGoogle Scholar
  89. 89.
    Liu WJ, Zuazua E (1999) Decay rates for dissipative wave equations. Ric Mat 48:61–75MathSciNetzbMATHGoogle Scholar
  90. 90.
    Liu Z, Rao R (2007) Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J Math Anal Appl 335(2):860–881MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Londen SO, Petzeltová H, Prüss J (2003) Global well‐posedness and stability of a partial integro‐differential equation with applications to viscoelasticity. J Evol Equ 3(2):169–201Google Scholar
  92. 92.
    Loreti P, Rao B (2006) Optimal energy decay rate for partially damped systems by spectral compensation. SIAM J Control Optim 45(5):1612–1632MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Martinez P (1999) A new method to obtain decay rate estimates for dissipative systems with localized damping. Rev Mat Complut 12:251–283MathSciNetzbMATHGoogle Scholar
  94. 94.
    Martinez P, Raymond J-P, Vancostenoble J (2003) Regional null controllability for a linearized Crocco type equation. SIAM J Control Optim 42(2):709–728MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    Miller L (2002) Escape function conditions for the observation, control, and stabilization of the wave equation. SIAM J Control Optim 41(5):1554–1566MathSciNetCrossRefGoogle Scholar
  96. 96.
    Muñoz Rivera JE, Peres Salvatierra A (2001) Asymptotic behaviour of the energy in partially viscoelastic materials. Quart Appl Math 59:557–578Google Scholar
  97. 97.
    Muñoz Rivera JE (1994) Asymptotic behaviour in linear viscoelasticity. Quart Appl Math 52:628–648Google Scholar
  98. 98.
    Nakao M (1996) Decay of solutions of the wave equation with a local nonlinear dissipation. Math Ann 305:403–417MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Pazy A (1968) Semigroups of linear operators and applications to partial differential equations. Springer BerlinGoogle Scholar
  100. 100.
    Pontryagin LS (1959) Optimal regulation processes. Uspehi Mat Nauk 14(1):3–20MathSciNetGoogle Scholar
  101. 101.
    Pontryagin LS, Boltyanskii VG, Gamkrelidze RV, Mishchenko EF (1962) The mathematical theory of optimal processes. Interscience Publishers John Wiley & Sons, Inc., New York–London, translated from the Russian by Trirogoff KN, edited by Neustadt LWGoogle Scholar
  102. 102.
    Propst G, Prüss J (1996) On wave equation with boundary dissipation of memory type. J Integral Equ Appl 8:99–123Google Scholar
  103. 103.
    Prüss J (1993) Evolutionary integral equations and applications. Monographs in Mathematics, vol 87. Birkhäuser Verlag, BaselGoogle Scholar
  104. 104.
    Raymond J-P (2006) Feedback boundary stabilization of the two‐dimensional Navier–Stokes equations. SIAM J Control Optim 45(3):790–828MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Rosier L (1997) Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM Control Optim Calc Var 2:33–55MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Rosier L (2000) Exact boundary controllability for the linear Korteweg–de Vries equation on the half-line. SIAM J Control Optim 39(2):331–351MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Rosier L, Zhang BY (2006) Global stabilization of the generalized Korteweg–de Vries equation posed on a finite domain. SIAM J Control Optim 45(3):927–956MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Russell DL (1978) Controllability and stabilizability theorems for linear partial differential equations: recent progress and open questions. SIAM Rev 20(4):639–739MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Russell DL (1993) A general framework for the study of indirect damping mechanisms in elastic systems. J Math Anal Appl 173(2):339–358MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Salamon D (1987) Infinite‐dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans Am Math Soc 300(2):383–431MathSciNetzbMATHGoogle Scholar
  111. 111.
    Shimakura N (1992) Partial differential operators of elliptic type. Translations of Mathematical Monographs, vol 99- American Mathematical Society, ProvidenceGoogle Scholar
  112. 112.
    Tataru D (1992) Viscosity solutions for the dynamic programming equations. Appl Math Optim 25:109–126MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Tataru D (1994) A‑priori estimates of Carleman’s type in domains with boundary. J Math Pures Appl 75:355–387MathSciNetGoogle Scholar
  114. 114.
    Tataru D (1995) Boundary controllability for conservative P.D.E. Appl Math Optim 31:257–295MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Tataru D (1996) Carleman estimates and unique continuation near the boundary for P.D.E.’s. J Math Pures Appl 75:367–408MathSciNetzbMATHGoogle Scholar
  116. 116.
    Tataru D (1997) Carleman estimates, unique continuation and controllability for anizotropic PDE’s. Optimization methods in partial differential equations, South Hadley MA 1996. Contemp Math vol 209. Am Math Soc pp 267–279, ProvidenceGoogle Scholar
  117. 117.
    de Teresa L (2000) Insensitizing controls for a semilinear heat equation. Comm Partial Differ Equ 25:39–72zbMATHCrossRefGoogle Scholar
  118. 118.
    Vancostenoble J, Martinez P (2000) Optimality of energy estimates for the wave equation with nonlinear boundary velocity feedbacks. SIAM J Control Optim 39:776–797 MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Vancostenoble J (1999) Optimalité d’estimation d’énergie pour une équation des ondes amortie. C R Acad Sci Paris, 328, série I, pp 777–782MathSciNetGoogle Scholar
  120. 120.
    Vitillaro E (2002) Global existence for the wave equation with nonlinear boundary damping and source terms. J Differ Equ 186(1):259–298MathSciNetCrossRefGoogle Scholar
  121. 121.
    Zabczyk J (1992) Mathematical control theory: an introduction. Birkhäuser, BostonzbMATHGoogle Scholar
  122. 122.
    Zuazua E (1989) Uniform stabilization of the wave equation by nonlinear feedbacks. SIAM J Control Optim 28:265–268MathSciNetGoogle Scholar
  123. 123.
    Zuazua E (1990) Exponential decay for the semilinear wave equation with locally distributed damping. Comm Partial Differ Equ 15:205–235MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    Zuazua E (2006) Control and numerical approximation of the heat and wave equations. In: Sanz-Solé M, Soria J, Juan Luis V, Verdera J (eds) Proceedings of the International Congress of Mathematicians, vol I, II, III, European Mathematical Society, Madrid, pp 1389–1417Google Scholar
  125. 125.
    Zuazua E (2006) Controllability and observability of partial differential equations: Some results and open problems. In: Dafermos CM, Feireisl E (eds) Handbook of differential equations: evolutionary differential equations, vol 3. Elsevier/North‐Holland, Amsterdam, pp 527–621Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fatiha Alabau‐Boussouira
    • 1
  • Piermarco Cannarsa
    • 2
  1. 1.L.M.A.M.Université de MetzMetzFrance
  2. 2.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly