Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Structurally Dynamic Cellular Automata

  • Andrew Ilachinski
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_194
  • 226 Downloads

Article Outline

Glossary

Definition of the Subject

Introduction

The Basic Model

Emerging Patterns and Behaviors

SDCA as Models of Computation

Generalized SDCA Models

Related Graph Dynamical Systems

SDCA as Models of Fundamental Physics

Future Directions and Speculations

Bibliography

Keywords

Turing Machine Transition Rule Graph Grammar Emergent Behavior Dynamic Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Adamatzky A (1995) Identification of Cellular Automata.Taylor and Francis, LondonGoogle Scholar
  2. 2.
    Applied Graph & Network Analysis software. http://benta.addr.com/agna/. Accessed 14 Oct 2008
  3. 3.
    Albert J, Culik II K (1987) A simple universal cellular automaton and its one-way and totalistic version.Complex Syst 1:1–16MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ali SM, Zimmer RM (1995) Games of Proto-Life in Masked Cellular Automata.Complexity International, vol 2. http://www.complexity.org.au
  5. 5.
    Ali SM, Zimmer RM (2000) A Formal Framework for Emergent Panpsychism. In: Tucson 2000: Consciousness Research Abstracts. http://www.consciousness.arizona.edu/tucson2000/. Accessed 14 Oct 2008
  6. 6.
    Alonso-Sanz R, Martin M (2006) A structurally dynamic cellular automaton with memory in the hexagonal tessellation. In: El Yacoubi S, Chopard B, Bandini S (eds) Lecture Notes in Computer Science, vol 4173. Springer, New York, pp 30–40Google Scholar
  7. 7.
    Alonso-Sanz R (2006) The Beehive Cellular Automaton with Memory.J Cell Autom 1(3):195–211MathSciNetzbMATHGoogle Scholar
  8. 8.
    Alonso-Sanz R (2007) A structurally dynamic cellular automaton with memory.Chaos, Solitons, Fractals 32(4):1285–1304MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Barabasi AL, Albert R (2002) Statistical mechanics of complex networks.Rev Mod Phys 74:47–97MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bollobas B (2002) Modern Graph Theory.Springer, New YorkGoogle Scholar
  11. 11.
    Borgatti SP (2002) NetDraw 1.0: Network visualization software.Analytic Technologies, HarvardGoogle Scholar
  12. 12.
    Chen C (2004) Graph Drawing Algorithms.In: Information Visualization. Springer, New YorkGoogle Scholar
  13. 13.
    Dadic I, Pisk K (1979) Dynamics of discrete‐space structure.Int J Theor Phys 18:345–358CrossRefGoogle Scholar
  14. 14.
    Doi H (1984) Graph theoretical analysis of cleavage pattern: graph developmental system and its application to cleavage pattern in ascidian egg.Dev Growth Differ 26(1):49–60MathSciNetCrossRefGoogle Scholar
  15. 15.
    Durrett R (2006) Random Graph Dynamics.Cambridge University Press, New YorkCrossRefGoogle Scholar
  16. 16.
    Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Scie 5:11–61MathSciNetGoogle Scholar
  17. 17.
    Ferber J (1999) Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-Wesley, New YorkGoogle Scholar
  18. 18.
    Ferreira A (2002) On models and algorithms for dynamic communication networks: the case for evolving graphs.In: 4th Recontres Francophones sur les Aspects Algorithmiques des Télécommunications (ALGOTEL 2002), Meze, FranceGoogle Scholar
  19. 19.
    Gerstner W, Kistler WM (2002) Spiking Neuron Models. Single Neurons, Populations, Plasticity.Cambridge University Press, New YorkzbMATHCrossRefGoogle Scholar
  20. 20.
    Grzegorz R (1997) Handbook of Graph Grammars and Computing by Graph Transformation.World Scientific, SingaporeGoogle Scholar
  21. 21.
    Halpern P (1989) Sticks and stones: a guide to structurally dynamic cellular automata.Amer J Phys 57(5):405–408CrossRefGoogle Scholar
  22. 22.
    Halpern P, Caltagirone G (1990) Behavior of topological cellular automata.Complex Syst 4:623–651MathSciNetzbMATHGoogle Scholar
  23. 23.
    Halpern P (1996) Genetic algorithms on structurally dynamic lattices.In: Toffo T, Biafore M, Leao J (eds) PhysComp96. New England Complex Systems Institute, Cambridge, pp 135–136Google Scholar
  24. 24.
    Halpern P (2003) Evolutionary Algorithms on a Self-Organized, Dynamic Lattice. In: Bar-Yam Y, Minai A (eds) Unifying Themes in Complex Systems, vol 2.Proceedings of the Second International Conference on Complex Systems. Westview Press, CambridgeGoogle Scholar
  25. 25.
    Harary F, Gupta G (1997) Dynamic graph models.Math Comp Model 25(7):79–87MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Hasslacher B, Meyer D (1998) Modeling dynamical geometry with lattice gas automata.Int J Mod Phys C 9:1597CrossRefGoogle Scholar
  27. 27.
    Hillman D (1995) Combinatorial Spacetimes. Ph D Dissertation, University of PittsburgGoogle Scholar
  28. 28.
    Ilachinski A (1986) Topological life-games I.Preprint. State University of New York at Stony BrookGoogle Scholar
  29. 29.
    Ilachinski A, Halpern P (1987) Structurally dynamic cellular automata.Preprint. State University of New York at Stony BrookGoogle Scholar
  30. 30.
    Ilachinski A, Halpern P (1987) Structurally dynamic cellular automata.Complex Syst 1(3):503–527MathSciNetzbMATHGoogle Scholar
  31. 31.
    Ilachinski A (1988) Computer Explorations of Self Organization in Discrete Complex Systems.Diss Abstr Int B 49(12):5349Google Scholar
  32. 32.
    Ilachinski A (2001) Cellular Automata: A Discrete Universe.World Scientific, SingaporezbMATHGoogle Scholar
  33. 33.
    Jourjine AN (1985) Dimensional phase transitions: coupling of matter to the cell complex.Phys Rev D 31:1443MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kaplunovsky V, Weinstein M (1985) Space-time: arena or illusion?Phys Rev D 31:1879–1898MathSciNetCrossRefGoogle Scholar
  35. 35.
    Kniemeyer O, Buck-Sorlin GH, Kurth W (2004) A Graph Grammar Approach to Artificial Life.Artif Life 10(4):413–431CrossRefGoogle Scholar
  36. 36.
    Krivovichev SV (2004) Crystal structures and cellular automata.Acta Crystallogr A 60(3):257–262MathSciNetCrossRefGoogle Scholar
  37. 37.
    Lehmann KA, Kaufmann M (2005) Evolutionary algorithms for the self-organized evolution of networks. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington DC. ACM Press, New YorkGoogle Scholar
  38. 38.
    Love P, Bruce M, Meyer D (2004) Lattice gas simulations of dynamical geometry in one dimension.Phil Trans Royal Soc A: Math Phys Eng Sci 362(1821):1667–1675MathSciNetzbMATHGoogle Scholar
  39. 39.
    Majercik S (1994) Structurally dynamic cellular automata.Master's Thesis, Department of Computer Science, University of Southern MaineGoogle Scholar
  40. 40.
    Makowiec D (2004) Cellular Automata with Majority Rule on Evolving Network. In: Lecture Notes in Computer Science, vol 3305. Springer, Berlin, pp 141–150Google Scholar
  41. 41.
    Mendes RV (2004) Tools for network dynamics.Int J Bifurc Chaos 15(4):1185–1213Google Scholar
  42. 42.
    Meschini D, Lehto M, Piilonen J (2005) Geometry, pregeometry and beyond.Stud Hist Phil Mod Phys 36:435–464MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Miramontes O, Solé R, Goodwin B (1993) Collective behavior of random-activated mobile cellular automata.Physica D 63:145–160Google Scholar
  44. 44.
    Misner CW, Thorne KS, Wheeler JA (1973) Gravitation.W.H. Freeman, New YorkGoogle Scholar
  45. 45.
    Mitchell M (1998) An Introduction to Genetic Algorithms.MIT Press, BostonzbMATHGoogle Scholar
  46. 46.
    Moore EF (1962) Sequential Machines: Selected Papers.Addison-Wesley, New YorkGoogle Scholar
  47. 47.
    Muhlenbein H (1991) Parallel genetic algorithm, population dynamics and combinatorial optimization.In: Schaffer H (ed) Third International Conference on Genetic Algorithms.Morgan Kauffman, San FranciscoGoogle Scholar
  48. 48.
    Murata S, Tomita K, Kurokawa H (2002) System generation by graph automata.In: Ueda K (ed) Proceedings of the 4th International Workshop on Emergent Synthesis (IWES '02), Kobe University, Japan, pp 47–52Google Scholar
  49. 49.
    Mustafa S (1999) The Concept of Poiesis and Its Application in a Heideggerian Critique of Computationally Emergent Artificiality.Ph D Thesis, Brunel University, LondonGoogle Scholar
  50. 50.
    Newman M, Barabasi A, Watts DJ (2006) The Structure and Dynamics of Networks.Princeton University Press, New JerseyzbMATHGoogle Scholar
  51. 51.
    Nochella J (2006) Cellular automata on networks. Talk given at the Wolfram Science Conference (NKS2006), Washington DC, USA, 16–18 JuneGoogle Scholar
  52. 52.
    Nooy W, Mrvar A, Batagelj V (2005) Exploratory Social Network Analysis with Pajek.Cambridge University Press, New YorkCrossRefGoogle Scholar
  53. 53.
    Nowotny T, Requardt M (1998) Dimension Theory of Graphs and Networks.J Phys A 31:2447–2463MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Nowotny T, Requardt M (1999) Pregeometric Concepts on Graphs and Cellular Networks as Possible Models of Space-Time at the Planck-Scale. Chaos, Solitons, Fractals 10:469–486MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Nowotny T, Requardt M (2006) Emergent Properties in Structurally Dynamic Disordered Cellular Networks. arXiv:cond-mat/0611427. Accessed 14 Oct 2008
  56. 56.
    O'Sullivan D (2001) Graph-cellular automata: a generalized discrete urban and regional model.Environ Plan B: Plan Des 28(5):687–705CrossRefGoogle Scholar
  57. 57.
    Prusinkiewicz P, Lindenmayer (1990) The Algorithmic Beauty of Plants. Springer, New YorkzbMATHCrossRefGoogle Scholar
  58. 58.
    Requardt M (1998) Cellular Networks as Models for Planck-Scale Physics.J Phys A 31:7997–8021MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Requardt M (2003) A geometric renormalisation group in discrete quantum space-time.J Math Phys 44:5588–5615MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Requardt M (2003) Scale free small world networks and the structure of quantum space-time. arXiv.org:gr-qc/0308089
  61. 61.
    Rose H (1993) Topologische Zellulaere Automaten.Master's Thesis, Humboldt University of BerlinGoogle Scholar
  62. 62.
    Rose H, Hempel H, Schimansky-Geier L (1994) Stochastic dynamics of catalytic CO oxidation on Pt(100).Physica A 206:421–440Google Scholar
  63. 63.
    Saidani S (2003) Topodynamique de Graphe. Les Journées Graphes, Réseaux et Modélisation. ESPCI, ParisGoogle Scholar
  64. 64.
    Saidani S (2004) Self-reconfigurable robots topodynamic.In: IEEE International Conference on Robotics and Automation, vol 3. IEEE Press, New York, pp 2883–2887Google Scholar
  65. 65.
    Saidani S, Piel M (2004) DynaGraph: a Smalltalk Environment for Self-Reconfigurable Robots Simulation.European Smalltalk User Group Conference. http://www.esug.org/
  66. 66.
    Schliecker G (1998) Binary random cellular structures.Phys Rev E 57:R1219–R1222CrossRefGoogle Scholar
  67. 67.
    Tomita K, Kurokawa H, Murata S (2002) Graph Automata: Natural Expression of Self-Reproduction.Physica D 171(4):197–210MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Tomita K, Kurokawa H, Murata S (2005) Self-description for construction and execution in graph rewriting automata.In: Lecture Notes in Computer Science, vol 3630. Springer, Berlin, pp 705–715Google Scholar
  69. 69.
    Tomita K, Kurokawa H, Murata S (2006) Two-state graph-rewriting automata. NKS 2006 Conference, Washington, DCGoogle Scholar
  70. 70.
    Tomita K, Kurokawa H, Murata S (2006) Automatic generation of self-replicating patterns in graph automata.Int J Bifurc Chaos 16(4):1011–1018MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Tomita K, Kurokawa H, Murata S (2006) Self-Description for Construction and Computation on Graph-Rewriting Automata.Artif Life 13(4):383–396MathSciNetCrossRefGoogle Scholar
  72. 72.
    Weinert K, Mehnen J, Rudolph G (2002) Dynamic Neighborhood Structures in Parallel Evolution Strategies.Complex Syst 13(3):227–244MathSciNetGoogle Scholar
  73. 73.
    Wheeler JA (1982) The computer and the universe.Int J Theor Phys 21:557CrossRefGoogle Scholar
  74. 74.
    Wolfram S (1984) Universality and complexity in cellular automata.Physica D 10:1–35MathSciNetCrossRefGoogle Scholar
  75. 75.
    Wolfram S (2002) A New Kind of Science.Wolfram Media, Champaign, pp 508–545zbMATHGoogle Scholar
  76. 76.
    Zuse K (1982) The Computing Universe. Int J Theor Phys 21:589–600CrossRefGoogle Scholar

Books and Reviews

  1. 77.
    Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, New JerseyzbMATHGoogle Scholar
  2. 78.
    Bornholdt S, Schuster HG (eds) (2003) Handbook of Graphs and Networks. Wiley-VCHGoogle Scholar
  3. 79.
    Breiger R, Carley K, Pattison P (2003) Dynamical Social Network Modeling and Analysis.The National Academy Press, Washington DCGoogle Scholar
  4. 80.
    Dogogovtsev SN, Mendes JF (2003) Evolution of Networks.Oxford University Press, New YorkCrossRefGoogle Scholar
  5. 81.
    Durrett R (2006) Random Graph Dynamics.Cambridge University Press, New YorkCrossRefGoogle Scholar
  6. 82.
    Gross JL, Yellen J (eds) (2004) Handbook of Graph Theory.CRC Press, Boca RatonzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andrew Ilachinski
    • 1
  1. 1.Center for Naval AnalysesAlexandriaUSA