Computational Complexity

2012 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Analog Computation

  • Bruce J. MacLennan
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-1800-9_12

Article Outline

Glossary

Definition of the Subject

Introduction

Fundamentals of Analog Computing

Analog Computation in Nature

General-Purpose Analog Computation

Analog Computation and the Turing Limit

Analog Thinking

Future Directions

Bibliography

Keywords

Analog Computer Analog Computation Turing Machine Digital Computer Recurrent Neural Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Anderson JA (1995) An Introduction to Neural Networks. MIT Press, CambridgezbMATHGoogle Scholar
  2. 2.
    Ashley JR (1963) Introduction to Analog Computing. Wiley, New YorkGoogle Scholar
  3. 3.
    Aspray W (1993) Edwin L. Harder and the Anacom: Analog computing at Westinghouse. IEEE Ann Hist of Comput 15(2):35–52MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ben-Hur A, Siegelmann HT, Fishman S (2002) A theory of complexity for continuous time systems. J Complex 18:51–86MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bissell CC (2004) A great disappearing act: The electronic analogue computer. In: IEEE Conference on the History of Electronics, Bletchley, June 2004.pp 28–30Google Scholar
  6. 6.
    Blum L, Cucker F, Shub M, Smale S (1998) Complexity and Real Computation. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Blum L, Shub M, Smale S (1988) On a theory of computation and complexity over the real numbers: NP completeness, recursive functions and universal machines.Bulletin Am Math Soc 21:1–46MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bournez O, Campagnolo ML, Graça DS, Hainry E. The General Purpose Analog Computer and computable analysis are two equivalent paradigms of analog computation. In: Theory and Applications of Models of Computation (TAMC 2006). Lectures Notes in Computer Science, vol 3959. Springer, Berlin, pp 631–643Google Scholar
  9. 9.
    Bournez O, Cosnard M (1996) On the computational power of dynamical systems and hybrid systems. Theor Comput Sci 168(2):417–59MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bowles MD (1996) US technological enthusiasm and British technological skepticism in the age of the analog brain. Ann Hist Comput 18(4):5–15CrossRefGoogle Scholar
  11. 11.
    Branicky MS (1994) Analog computation with continuous ODEs.In: Proceedings IEEE Workshop on Physics and Computation, Dallas, pp 265–274Google Scholar
  12. 12.
    Brockett RW (1988) Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems. In: Proceedings 27th IEEE Conference Decision and Control, Austin, December 1988, pp 799–803Google Scholar
  13. 13.
    Camazine S, Deneubourg J-L, Franks NR, Sneyd G, Theraulaz J, Bonabeau E (2001) Self-organization in Biological Systems. Princeton Univ. Press, New YorkGoogle Scholar
  14. 14.
    Changeux J-P (1985) Neuronal Man: The Biology of Mind (trans: Garey LL). Oxford University Press, OxfordGoogle Scholar
  15. 15.
    Clymer AB (1993) The mechanical analog computers of Hannibal Ford and William Newell. IEEE Ann Hist Comput 15(2):19–34CrossRefGoogle Scholar
  16. 16.
    Davidson EH (2006) The Regulatory Genome: Gene Regulatory Networks in Development and Evolution. Academic Press, AmsterdamGoogle Scholar
  17. 17.
    Davies JA (2005) Mechanisms of Morphogensis. Elsevier, AmsterdamGoogle Scholar
  18. 18.
    Davis M (2004) The myth of hypercomputation. In: Teuscher C (ed) Alan Turing: Life and Legacy of a Great Thinker. Springer, Berlin, pp 195–212Google Scholar
  19. 19.
    Davis M (2006) Why there is no such discipline as hypercomputation.Appl Math Comput 178:4–7MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Fakhraie SM, Smith KC (1997) VLSI-Compatible Implementation for Artificial Neural Networks. Kluwer, BostonCrossRefGoogle Scholar
  21. 21.
    Franklin S, Garzon M (1990) Neural computability. In: Omidvar OM (ed) Progress in Neural Networks, vol 1. Ablex, Norwood, pp 127–145Google Scholar
  22. 22.
    Freeth T, Bitsakis Y, Moussas X, Seiradakis JH, Tselikas A, Mangou H, Zafeiropoulou M, Hadland R, Bate D, Ramsey A, Allen M, Crawley A, Hockley P, Malzbender T, Gelb D, Ambrisco W, Edmunds MG (2006) Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444:587–591CrossRefGoogle Scholar
  23. 23.
    Garzon M, Franklin S (1989) Neural computability ii (extended abstract). In: Proceedings, IJCNN International Joint Conference on Neural Networks, vol 1. Institute of Electrical and Electronic Engineers, New York, pp 631–637Google Scholar
  24. 24.
    Garzon M, Franklin S (1990) Computation on graphs.In: Omidvar OM (ed) Progress in Neural Networks, vol 2. Ablex, NorwoodGoogle Scholar
  25. 25.
    Goldstine HH (1972) The Computer from Pascal to von Neumann. Princeton, PrincetonzbMATHGoogle Scholar
  26. 26.
    Grossberg S (1967) Nonlinear difference-differential equations in prediction and learning theory. Proc Nat Acad Sci USA 58(4):1329–1334MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Grossberg S (1973) Contour enhancement, short term memory, and constancies in reverberating neural networks. Stud Appl Math LII:213–257MathSciNetGoogle Scholar
  28. 28.
    Grossberg S (1976) Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors.Biol Cybern 23:121–134MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Hartl DL (1994) Genetics, 3rd edn. Jones & Bartlett, BostonGoogle Scholar
  30. 30.
    Hopfield JJ (1984) Neurons with graded response have collective computational properties like those of two-state neurons. Proc Nat Acad Sci USA 81:3088–92CrossRefGoogle Scholar
  31. 31.
    Howe RM (1961) Design Fundamentals of Analog Computer Components.Van Nostrand, PrincetonGoogle Scholar
  32. 32.
    Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–99CrossRefGoogle Scholar
  33. 33.
    Kirchhoff G (1845) Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesondere durch eine kreisförmige. Ann Phys Chem 140(64)(4):497–514Google Scholar
  34. 34.
    Lang GF (2000) Analog was not a computer trademark!Why would anyone write about analog computers in year 2000? Sound Vib 34(8):16–24Google Scholar
  35. 35.
    Lipshitz L, Rubel LA (1987) A differentially algebraic replacment theorem. Proc Am Math Soc 99(2):367–72MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Maass W, Sontag ED (1999) Analog neural nets with Gaussian or other common noise distributions cannot recognize arbitrary regular languages.Neural Comput 11(3):771–782CrossRefGoogle Scholar
  37. 37.
    MacLennan BJ (1987) Technology-independent design of neurocomputers: The universal field computer. In: Caudill M, Butler C (eds) Proceedings of the IEEE First International Conference on Neural Networks, vol 3, IEEE Press, pp 39–49Google Scholar
  38. 38.
    MacLennan BJ (1990) Field computation: A theoretical framework for massively parallel analog computation, parts I–IV.Technical Report CS-90-100, Department of Computer Science, University of Tennessee, Knoxville.Available from http://www.cs.utk.edu/~mclennan. Accessed 20 May 2008
  39. 39.
    MacLennan BJ (1991) Gabor representations of spatiotemporal visual images. Technical Report CS-91-144, Department of Computer Science, University of Tennessee, Knoxville. Available from http://www.cs.utk.edu/~mclennan. Accessed 20 May 2008
  40. 40.
    MacLennan BJ (1994) Continuous computation and the emergence of the discrete.In: Pribram KH (ed) Origins: Brain & Self-Organization, Lawrence Erlbaum, Hillsdale, pp 121–151.Google Scholar
  41. 41.
    MacLennan BJ (1994) “Words lie in our way”. Minds Mach 4(4):421–437CrossRefGoogle Scholar
  42. 42.
    MacLennan BJ (1995) Continuous formal systems: A unifying model in language and cognition. In: Proceedings of the IEEE Workshop on Architectures for Semiotic Modeling and Situation Analysis in Large Complex Systems, Monterey, August 1995. pp 161–172.Also available from http://www.cs.utk.edu/~mclennan. Accessed 20 May 2008
  43. 43.
    MacLennan BJ (1999) Field computation in natural and artificial intelligence.Inf Sci 119:73–89MathSciNetCrossRefGoogle Scholar
  44. 44.
    MacLennan BJ (2001) Can differential equations compute? Technical Report UT-CS-01-459, Department of Computer Science, University of Tennessee, Knoxville.Available from http://www.cs.utk.edu/~mclennan. Accessed 20 May 2008
  45. 45.
    MacLennan BJ (2003) Transcending Turing computability. Minds Mach 13:3–22zbMATHCrossRefGoogle Scholar
  46. 46.
    MacLennan BJ (2004) Natural computation and non-Turing models of computation. Theor Comput Sci 317:115–145MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    MacLennan BJ (in press) Super-Turing or non-Turing? Extending the concept of computation. Int J Unconv Comput, in pressGoogle Scholar
  48. 48.
    Maini PK, Othmer HG (eds) (2001) Mathematical Models for Biological Pattern Formation. Springer, New YorkGoogle Scholar
  49. 49.
    Maziarz EA, Greenwood T (1968) Greek Mathematical Philosophy. Frederick Ungar, New YorkzbMATHGoogle Scholar
  50. 50.
    McClelland JL, Rumelhart DE, the PDP Research Group.Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 2: Psychological and Biological Models. MIT Press, CambridgeGoogle Scholar
  51. 51.
    Mead C (1987) Silicon models of neural computation.In: Caudill M, Butler C (eds) Proceedings, IEEE First International Conference on Neural Networks, vol I. IEEE Press, Piscataway, pp 91–106Google Scholar
  52. 52.
    Mead C (1989) Analog VLSI and Neural Systems.Addison-Wesley, ReadingzbMATHCrossRefGoogle Scholar
  53. 53.
    Mills JW (1996) The continuous retina: Image processing with a single-sensor artificial neural field network. In: Proceedings IEEE Conference on Neural Networks. IEEE Press, PiscatawayGoogle Scholar
  54. 54.
    Mills JW, Himebaugh B, Kopecky B, Parker M, Shue C, Weilemann C (2006) “Empty space” computes: The evolution of an unconventional supercomputer.In: Proceedings of the 3rd Conference on Computing Frontiers, New York, May 2006. ACM Press, pp 115–126 Google Scholar
  55. 55.
    Moore C (1996) Recursion theory on the reals and continuous-time computation. Theor Comput Sci 162:23–44zbMATHCrossRefGoogle Scholar
  56. 56.
    Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8):114–117Google Scholar
  57. 57.
    Murray JD (1977) Lectures on Nonlinear Differential-Equation Models in Biology. Oxford, OxfordGoogle Scholar
  58. 58.
    Omohundro S (1984) Modeling cellular automata with partial differential equations. Physica D 10:128–34, 1984.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Orponen P (1997) A survey of continous-time computation theory.In: Advances in Algorithms, Languages, and Complexity, Kluwer, Dordrecht, pp 209–224Google Scholar
  60. 60.
    Orponen P, Matamala M (1996) Universal computation by finite two-dimensional coupled map lattices. In: Proceedings, Physics and Computation 1996, New England Complex Systems Institute, Cambridge, pp 243–7Google Scholar
  61. 61.
    Owens L (1986) Vannevar Bush and the differential analyzer: The text and context of an early computer. Technol Culture 27(1):63–95CrossRefGoogle Scholar
  62. 62.
    Peterson GR (1967) Basic Analog Computation.Macmillan, New YorkGoogle Scholar
  63. 63.
    Pour-El MB (1974) Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Trans Am Math Soc 199:1–29MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Pour-El MB, Richards I (1979) A computable ordinary differential equation which possesses no computable solution.Ann Math Log 17:61–90MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Pour-EL MB, Richards I (1981) The wave equation with computable initial data such that its unique solution is not computable.Adv Math 39:215–239MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Pour-El MB, Richards I (1982) Noncomputability in models of physical phenomena. Int J Theor Phys, 21:553–555zbMATHCrossRefGoogle Scholar
  67. 67.
    Puchta S (1996) On the role of mathematics and mathematical knowledge in the invention of Vannevar Bush's early analog computers. IEEE Ann Hist Comput 18(4):49–59MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Reiner JM (1968) The Organism as an Adaptive Control System.Prentice-Hall, Englewood CliffsGoogle Scholar
  69. 69.
    Rimon E, Koditschek DE (1989) The construction of analytic diffeomorphisms for exact robot navigation on star worlds. In: Proceedings of the 1989 IEEE International Conference on Robotics and Automation, Scottsdale AZ. IEEE Press, New York, pp 21–26 CrossRefGoogle Scholar
  70. 70.
    Rogers AE, Connolly TW (1960) Analog Computation in Engineering Design. McGraw-Hill, New YorkGoogle Scholar
  71. 71.
    Rubel LA (1985) The brain as an analog computer.J Theor Neurobiol 4:73–81Google Scholar
  72. 72.
    Rubel LA (1988) Some mathematical limitations of the general-purpose analog computer. Adv Appl Math 9:22–34MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Rubel LA (1993) The extended analog computer. Adv Appl Math 14:39–50MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Rumelhart DE, McClelland JL, the PDP Research Group (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol 1: Foundations. MIT Press, CambridgeGoogle Scholar
  75. 75.
    Sanger TD (1996) Probability density estimation for the interpretation of neural population codes. J Neurophysiol 76:2790–2793 Google Scholar
  76. 76.
    Shannon CE (1941) Mathematical theory of the differential analyzer. J Math Phys Mass Inst Technol 20:337–354MathSciNetzbMATHGoogle Scholar
  77. 77.
    Shannon CE (1993) Mathematical theory of the differential analyzer.In: Sloane NJA, Wyner AD (eds) Claude Elwood Shannon: Collected Papers. IEEE Press, New York, pp 496–513Google Scholar
  78. 78.
    Siegelmann HT (1999) Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, BostonzbMATHCrossRefGoogle Scholar
  79. 79.
    Siegelmann HT, Ben-Hur A, Fishman S (1999) Computational complexity for continuous time dynamics. Phys Rev Lett 83(7):1463–6CrossRefGoogle Scholar
  80. 80.
    Siegelmann HT, Sontag ED (1994) Analog computation via neural networks. Theor Comput Sci 131:331–360MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Small JS (1993) General-purpose electronic analog computing.IEEE Ann Hist Comput 15(2):8–18CrossRefGoogle Scholar
  82. 82.
    Small JS (2001) The Analogue Alternative: The electronic analogue computer in Britain and the USA, 1930–1975. Routledge, London & New YorkGoogle Scholar
  83. 83.
    Stannett M (19901) X-machines and the halting problem: Building a super-Turing machine. Form Asp Comput 2:331–341Google Scholar
  84. 84.
    Thomson W (Lord Kelvin) (1876) Mechanical integration of the general linear differential equation of any order with variable coefficients. Proc Royal Soc 24:271–275Google Scholar
  85. 85.
    Thomson W (Lord Kelvin) (1878) Harmonic analyzer.Proc Royal Soc 27:371–373CrossRefGoogle Scholar
  86. 86.
    Thomson W (Lord Kelvin) (1938). The tides. In: The Harvard Classics, vol 30: Scientific Papers.Collier, New York, pp 274–307Google Scholar
  87. 87.
    Truitt TD, Rogers AE (1960) Basics of Analog Computers.John F. Rider, New YorkGoogle Scholar
  88. 88.
    van Gelder T (1997) Dynamics and cognition. In: Haugeland J (ed) Mind Design II: Philosophy, Psychology and Artificial Intelligence.MIT Press, Cambridge MA, revised & enlarged edition, Chap 16, pp 421–450Google Scholar
  89. 89.
    Weyrick RC (1969) Fundamentals of Analog Computers.Prentice-Hall, Englewood CliffsGoogle Scholar
  90. 90.
    Wolpert DH (1991) A computationally universal field computer which is purely linear. Technical Report LA-UR-91-2937. Los Alamos National Laboratory, Loa AlamosGoogle Scholar
  91. 91.
    Wolpert DH, MacLennan BJ (1993) A computationally universal field computer that is purely linear. Technical Report CS-93-206. Dept. of Computer Science, University of Tennessee, KnoxvilleGoogle Scholar

Books and Reviews

  1. 92.
    Fifer S (1961) Analog computation: Theory, techniques and applications, 4 vols.McGraw-Hill, New YorkGoogle Scholar
  2. 93.
    Bissell CC (2004) A great disappearing act: The electronic analogue computer. In: IEEE conference on the history of electronics, 28–30 Bletchley, June 2004Google Scholar
  3. 94.
    Lipka J (1918) Graphical and mechanical computation. Wiley, New YorkzbMATHGoogle Scholar
  4. 95.
    Mead C (1989) Analog VLSI and neural systems. Addison-Wesley, ReadingzbMATHCrossRefGoogle Scholar
  5. 96.
    Siegelmann HT (1999) Neural networks and analog computation: Beyond the Turing limit. Birkhäuser, BostonzbMATHCrossRefGoogle Scholar
  6. 97.
    Small JS (2001) The analogue alternative: The electronic analogue computer in Britain and the USA, 1930–1975. Routledge, London & New YorkGoogle Scholar
  7. 98.
    Small JS (1993) General-purpose electronic analog computing: 1945–1965. IEEE Ann Hist Comput 15(2):8–18CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Bruce J. MacLennan
    • 1
  1. 1.Department of Electrical Engineering & Computer ScienceUniversity of TennesseeKnoxvilleUSA