Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

H2 Optimal Control

  • Ben M. ChenEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4471-5102-9_204-2


An optimization-based approach to linear feedback control system design uses the H2 norm, or energy of the impulse response, to quantify closed-loop performance. In this entry, an overview of state-space methods for solving H2 optimal control problems via Riccati equations and matrix inequalities is presented in a continuous-time setting. Both regular and singular problems are considered. Connections to so- called LQR and LQG control problems are also described.


Feedback control H2 control Linear matrix inequalities Linear systems Riccati equations State-space methods 
This is a preview of subscription content, log in to check access.


  1. Anderson BDO, Moore JB (1989) Optimal control: linear quadratic methods. Prentice Hall, Englewood CliffsGoogle Scholar
  2. Bryson AE, Ho YC (1975) Applied optimal control, optimization, estimation, and control. Wiley, New YorkGoogle Scholar
  3. Chen BM, Saberi A (1993) Necessary and sufficient conditions under which an H2-optimal control problem has a unique solution. Int J Control 58:337–348CrossRefGoogle Scholar
  4. Chen BM, Saberi A, Sannuti P, Shamash Y (1993) Construction and parameterization of all static and dynamic H2-optimal state feedback solutions, optimal fixed modes and fixed decoupling zeros. IEEE Trans Autom Control 38:248–261CrossRefGoogle Scholar
  5. Chen BM, Saberi A, Shamash Y, Sannuti (1994a) Construction and parameterization of all static and dynamic H2-optimal state feedback solutions for discrete time systems. Automatica 30:1617–1624MathSciNetCrossRefGoogle Scholar
  6. Chen BM, Saberi A, Shamash Y (1994b) A non-recursive method for solving the general discrete time algebraic Riccati equation related to the H control problem. Int J Robust Nonlinear Control 4:503–519CrossRefGoogle Scholar
  7. Chen BM, Saberi A, Shamash Y (1996) Necessary and sufficient conditions under which a discrete time H2-optimal control problem has a unique solution. J Control Theory Appl 13:745–753Google Scholar
  8. Chen BM, Lin Z, Shamash Y (2004) Linear systems theory: a structural decomposition approach. Birkhäuser, BostonCrossRefGoogle Scholar
  9. Doyle JC (1983) Synthesis of robust controller and filters. In: 22nd IEEE Conference on Decision and Control, San AntonioGoogle Scholar
  10. Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New YorkCrossRefGoogle Scholar
  11. Geerts T (1989) All optimal controls for the singular linear quadratic problem without stability: a new interpretation of the optimal cost. Linear Algebra Appl 122:65–104MathSciNetCrossRefGoogle Scholar
  12. Kailath T (1974) A view of three decades of linear filtering theory. IEEE Trans Inf Theory 20:146–180MathSciNetCrossRefGoogle Scholar
  13. Kucera V (1972) The discrete Riccati equation of optimal control. Kybernetika 8:430–447MathSciNetzbMATHGoogle Scholar
  14. Kwakernaak H, Sivan R (1972) Linear optimal control systems. Wiley, New YorkzbMATHGoogle Scholar
  15. Lewis FL (1986) Optimal control. Wiley, New YorkGoogle Scholar
  16. Pappas T, Laub AJ, Sandell NR (1980) On the numerical solution of the discrete-time algebraic Riccati equation. IEEE Trans Autom Control AC-25:631–641MathSciNetCrossRefGoogle Scholar
  17. Saberi A, Sannuti P, Chen BM (1995) H2 optimal control. Prentice Hall, LondonzbMATHGoogle Scholar
  18. Silverman L (1976) Discrete Riccati equations: alternative algorithms, asymptotic properties, and system theory interpretations. Control Dyn Syst 12:313–386MathSciNetCrossRefGoogle Scholar
  19. Stoorvogel AA (1992) The singular H2 control problem. Automatica 28:627–631CrossRefGoogle Scholar
  20. Stoorvogel AA, Saberi A, Chen BM (1993) Full and reduced order observer based controller design for H2-optimization. Int J Control 58:803–834CrossRefGoogle Scholar
  21. Trentelman HL, Stoorvogel AA (1995) Sampled-data and discrete-time H2 optimal control. SIAM J Control Optim 33:834–862MathSciNetCrossRefGoogle Scholar
  22. Willems JC, Kitapci A, Silverman LM (1986) Singular optimal control: a geometric approach. SIAM J Control Optim 24:323–337MathSciNetCrossRefGoogle Scholar
  23. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Mechanical and Automation EngineeringChinese University of Hong KongShatin/Hong KongChina

Section editors and affiliations

  • Michael Cantoni
    • 1
  1. 1.Department of Electrical & Electronic EngineeringThe University of MelbourneParkvilleAustralia