Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Walking Robots

  • Ambarish GoswamiEmail author
  • Katsu Yamane
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4471-5102-9_179-2


This entry presents an overview of mobile “walking” robots that use their legs to move from one place to another. Walking robots represent a fascinating class of machines which holds the potential for breakthrough applications and inspires multidisciplinary research with rich scientific content. The key feature that separates walking robots from all other classes of mobile robots is their ability to explore unprepared surfaces using discrete footholds. In this respect, these robots are truly the machine counterparts of biological land animals.


Walking robots Gait Balance Humanoid robots 
This is a preview of subscription content, log in to check access.


  1. Asimov I (1950) I robot. Gnome Press, New YorkGoogle Scholar
  2. Bares JE, Wettergreen DS (1999) Dante II: technical description, results, and lessons learned. Int J Robot Res 18(7):621–649CrossRefGoogle Scholar
  3. Chevallereau C, Westervelt ER, Grizzle JW (2005) Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. Int J Robot Res 24(6):431–464CrossRefGoogle Scholar
  4. Falconer J (2013) Nao robot goes to school to help kids with autism. IEEE SpectGoogle Scholar
  5. Fujiwara K, Kanehiro F, Kajita S, Kaneko K, Yokoi K, Hirukawa H (2002) UKEMI: falling motion control to minimize damage to biped humanoid robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 2521–2526Google Scholar
  6. Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: IEEE international conference on robotics and automation (ICRA), pp 2124–2129Google Scholar
  7. Hamilton E (1940) Captain future: the wizard of science. Thrilling Publications, New YorkGoogle Scholar
  8. International Federation of Robotics (IFR) Press Release (2012). http://www.ifr.org/news/ifr-press-release/50- years-industrial-robots-410/
  9. Ishida T, Kuroki Y, Takahashi T (2004) Analysis of motions of a small biped entertainment robot. IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 142–147Google Scholar
  10. Kajita S, Espiau B (2008) Legged robots. In: B Siciliano, O Khatib (eds) Springer handbook of robotics. Springer, Berlin, pp 361–389CrossRefGoogle Scholar
  11. Lillicrap TP, et al (2015) Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971Google Scholar
  12. Kim J, Alspach A, Yamane K (2017) Snapbot: a reconfigurable legged robot. In: Proceedings of 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 5861–5867Google Scholar
  13. Kosuge K (2010) Dance partner robot: an engineering approach to human-robot interaction. In: 5th ACM/IEEE international conference on human-robot interaction (HRI), OsakaGoogle Scholar
  14. Lewinger WA, Branicky MS, Quinn RD (2005) Insect-inspired, actively compliant hexapod capable of object manipulation. In: Proceedings of CLAWAR 2005 8th international conference on climbing and walking robotsGoogle Scholar
  15. Malone R (2004) Ultimate robot. DK Publishing, New YorkGoogle Scholar
  16. McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82CrossRefGoogle Scholar
  17. Raibert M (1989) Legged robots. In: Brady M (ed) Robotics science. System development foundation benchmark series. The MIT Press, CambridgeGoogle Scholar
  18. Raibert M, Blankespoor K, Nelson G, Playter R and the BigDog Team (2008) BigDog, the rough-terrain quaduped robot. In: Proceedings of the 17th IFAC world congress, Seoul, pp 10822–10825Google Scholar
  19. Robins B, Dautenhahn K, Dickerson P (2012) Embodiment and cognitive learning – can a humanoid robot help children with autism to learn about tactile social behaviour? Social robotics lecture notes in computer science, vol 7621. Springer, Berlin/Heidelberg, pp 66–75Google Scholar
  20. Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans Syst Man Cybern 34:630–637CrossRefGoogle Scholar
  21. Vukobratović M, Juričić D (1969) Contribution to the synthesis of biped gait. IEEE Trans Bio-Medical Eng 16(1):1–6CrossRefGoogle Scholar
  22. Waldron KJ, McGhee RB (1986) The adaptive suspension vehicle. IEEE Control Syst Mag 6(6):7–12CrossRefGoogle Scholar
  23. Yamasaki F, Nakagawa Y (2006) Education using small humanoid robot. In: Proceedings of 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005), pp 248–253Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  1. 1.Intuitive SurgicalSunnyvaleUSA
  2. 2.Honda Research Institute, Inc.San JoseUSA

Section editors and affiliations

  • Bruno Siciliano
    • 1
  1. 1.Dipartimento di Ingegneria Elettrica e Tecnologie dell'InformazioneUniversità degli Studi di Napoli Federico IINapoliItaly