Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Force Control in Robotics

  • Luigi VillaniEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4471-5102-9_169-1


Force control is used to handle the physical interaction between a robot and the environment and also to ensure safe and dependable operation in the presence of humans. The control goal may be that to keep the interaction forces limited or that to guarantee a desired force along the directions where interaction occurs while a desired motion is ensured in the other directions. This entry presents the basic control schemes, focusing on robot manipulators.


Force control Force/torque sensor Stiffness control Compliance control Impedance control Constrained motion Hybrid force/motion control 
This is a preview of subscription content, log in to check access.


  1. Caccavale F, Natale C, Siciliano B, Villani L (1999) Six-DOF impedance control based on angle/axis representations. IEEE Trans Robot Autom 15:289–300CrossRefGoogle Scholar
  2. Chiaverini S, Sciavicco L (1993) The parallel approach to force/position control of robotic manipulators, IEEE Trans Robot Autom 9:361–373CrossRefGoogle Scholar
  3. Chiaverini S, Siciliano B, Villani L (1994) Force/position regulation of compliant robot manipulators. IEEE Trans Autom Control 39:647–652CrossRefzbMATHGoogle Scholar
  4. De Schutter J, Van Brussel H (1988) Compliant robot motion I. A formalism for specifying compliant motion tasks. Int J Robot Res 7(4):3–17CrossRefGoogle Scholar
  5. De Schutter J, De Laet T, Rutgeerts J, Decré W, Smits R, Aerbeliën E, Claes K, Bruyninckx H (2007) Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. Int J Robot Res 26(5):433–455CrossRefGoogle Scholar
  6. Hogan N (1985) Impedance control: an approach to manipulation: parts I–III. ASME J Dyn Syst Meas Control 107:1–24CrossRefzbMATHGoogle Scholar
  7. Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom 3:43–53CrossRefGoogle Scholar
  8. Mason MT(1981) Compliance and force control for computer controlled manipulators. IEEE Trans Syst Man Cybern 11:418–432CrossRefGoogle Scholar
  9. Ott C, Albu-Schaeffer A, Kugi A, Hirzinger G (2008) On the passivity based impedance control of flexible joint robots. IEEE Trans Robot 24:416–429CrossRefGoogle Scholar
  10. Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. ASME J Dyn Syst Meas Control 103:126–133CrossRefGoogle Scholar
  11. Salisbury JK (1980) Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE conference on decision and control, Albuquerque, pp 95–100Google Scholar
  12. Siciliano B, Villani L (1999) Robot force control. Kluwer, BostonCrossRefzbMATHGoogle Scholar
  13. Villani L, De Schutter J (2008) Robot force control. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 161–185CrossRefGoogle Scholar
  14. Whitney DE (1977) Force feedback control of manipulator fine motions. ASME J Dyn Syst Meas Control 99:91–97CrossRefGoogle Scholar
  15. Yoshikawa T (1987) Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force. IEEE J Robot Autom 3:386–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2013

Authors and Affiliations

  1. 1.Dipartimento di Ingeneria Elettrica e Tecnologie dell’InformazioneUniversitàdegli Studi di Napoli Federico IINapoliItaly