Anesthesia in the Cardiac Catheterization Laboratory and MRI

Reference work entry


Modern pediatric cardiac catheterization laboratories (CCL) have become highly specialized units with an increasing focus on interventional procedures. Furthermore, the cardiac MRI examination is being increasingly used in the management of congenital heart disease patients. The following section will discuss the delivery of anesthesia in these two unique and challenging environments. Patients range from tiny infants to elderly adults, and the sedation needs from monitored anesthesia care to a general anesthetic. Familiarity to the CCL, safety awareness in the MRI suite, and a sound knowledge of the disease processes and procedure-specific requirements are critical to procedural success and safe outcomes. The anesthetic concerns and potential complications will be discussed for the most common procedures encountered in the CCL, for example, electrophysiological studies, valvuloplasties, defect occlusions, transcatheter valve insertion, angioplasty, and stent placement.


Congenital cardiac disease Invasive cardiology Pediatric anesthesiology 


  1. 1.
    Bashore TM et al (2001) American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on cardiac catheterization laboratory standards. A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37(8):2170–2214CrossRefPubMedGoogle Scholar
  2. 2.
    Mathewson JW (1996) Building a pediatric cardiac catheterization laboratory and conference room: design considerations and filmless imaging. Pediatr Cardiol 17(5):279–294CrossRefPubMedGoogle Scholar
  3. 3.
    Hirsch R (2008) The hybrid cardiac catheterization laboratory for congenital heart disease: from conception to completion. Catheter Cardiovasc Interv: Off J Soc Card Angiogr Interv 71(3):418–428CrossRefGoogle Scholar
  4. 4.
    Augello G et al (2004) Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure. Ital Heart J 5 Suppl 6:68S–75SPubMedGoogle Scholar
  5. 5.
    Mester R et al (2008) Monitored anesthesia care with a combination of ketamine and dexmedetomidine during cardiac catheterization. Am J Ther 15(1):24–30CrossRefPubMedGoogle Scholar
  6. 6.
    Tosun Z et al (2006) Dexmedetomidine-ketamine and propofol-ketamine combinations for anesthesia in spontaneously breathing pediatric patients undergoing cardiac catheterization. J Cardiothorac Vasc Anesth 20(4):515–519CrossRefPubMedGoogle Scholar
  7. 7.
    Gayatri P, Suneel PR, Sinha PK (2007) Evaluation of propofol-ketamine anesthesia for children undergoing cardiac catheterization procedures. J Interv Cardiol 20(2):158–163CrossRefPubMedGoogle Scholar
  8. 8.
    Akin A et al (2005) Propofol and propofol-ketamine in pediatric patients undergoing cardiac catheterization. Pediatr Cardiol 26(5):553–557CrossRefPubMedGoogle Scholar
  9. 9.
    Ulgey A et al (2012) Is the addition of Dexmedetomidine to a Ketamine-Propofol combination in pediatric cardiac catheterization sedation useful? Pediatr Cardiol 33(5):770–774CrossRefPubMedGoogle Scholar
  10. 10.
    Mathes DD, Kern JA (2000) Continuous spinal anesthetic technique for endovascular aortic stent graft surgery. J Clin Anesth 12(6):487–490CrossRefPubMedGoogle Scholar
  11. 11.
    Gossl M, Rihal CS (2010) Cardiac shunt calculations made easy: a case-based approach. Catheter Cardiovasc Interv 76(1):137–142CrossRefPubMedGoogle Scholar
  12. 12.
    LaFarge CG, Miettinen OS (1970) The estimation of oxygen consumption. Cardiovasc Res 4(1):23–30CrossRefPubMedGoogle Scholar
  13. 13.
    Kan JS et al (1982) Percutaneous balloon valvuloplasty: a new method for treating congenital pulmonary-valve stenosis. N Engl J Med 307(9):540–542CrossRefPubMedGoogle Scholar
  14. 14.
    Lababidi Z, Wu JR, Walls JT (1984) Percutaneous balloon aortic valvuloplasty: results in 23 patients. Am J Cardiol 53(1):194–197CrossRefPubMedGoogle Scholar
  15. 15.
    Grifka RG et al (1992) Double-transseptal, double-balloon valvuloplasty for congenital mitral stenosis. Circulation 85(1):123–129CrossRefPubMedGoogle Scholar
  16. 16.
    Khalilullah M et al (1987) Double-balloon valvuloplasty of tricuspid stenosis. Am Heart J 114(5):1232–1233CrossRefPubMedGoogle Scholar
  17. 17.
    Feltes TF et al (2011) Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation 123(22):2607–2652CrossRefPubMedGoogle Scholar
  18. 18.
    Daehnert I et al (2004) Rapid right ventricular pacing is an alternative to adenosine in catheter interventional procedures for congenital heart disease. Heart 90(9):1047–1050CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kahn RA et al (2000) Safety and efficacy of high-dose adenosine-induced asystole during endovascular AAA repair. J Endovasc Ther 7(4):292–296CrossRefPubMedGoogle Scholar
  20. 20.
    Porstmann W et al (1971) Catheter closure of patent ductus arteriosus. 62 cases treated without thoracotomy. Radiol Clin North Am 9(2):203–218PubMedGoogle Scholar
  21. 21.
    King TD, Mills NL (1974) Nonoperative closure of atrial septal defects. Surgery 75(3):383–388PubMedGoogle Scholar
  22. 22.
    Lock JE et al (1988) Transcatheter closure of ventricular septal defects. Circulation 78(2):361–368CrossRefPubMedGoogle Scholar
  23. 23.
    Du ZD et al (2002) Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J Am Coll Cardiol 39(11):1836–1844CrossRefPubMedGoogle Scholar
  24. 24.
    Pass RH et al (2004) Multicenter USA Amplatzer patent ductus arteriosus occlusion device trial: initial and one-year results. J Am Coll Cardiol 44(3):513–519CrossRefPubMedGoogle Scholar
  25. 25.
    Mullins CE et al (1988) Implantation of balloon-expandable intravascular grafts by catheterization in pulmonary arteries and systemic veins. Circulation 77(1):188–199CrossRefPubMedGoogle Scholar
  26. 26.
    O’Laughlin MP et al (1991) Use of endovascular stents in congenital heart disease. Circulation 83(6):1923–1939CrossRefPubMedGoogle Scholar
  27. 27.
    Shaffer KM et al (1998) Intravascular stents in congenital heart disease: short- and long-term results from a large single-center experience. J Am Coll Cardiol 31(3):661–667CrossRefPubMedGoogle Scholar
  28. 28.
    Law MA et al (2010) Pulmonary artery stents: long-term follow-up. Catheter Cardiovasc Interv 75(5):757–764CrossRefPubMedGoogle Scholar
  29. 29.
    Lock JE et al (1981) Transvenous angioplasty of experimental branch pulmonary artery stenosis in newborn lambs. Circulation 64(5):886–893CrossRefPubMedGoogle Scholar
  30. 30.
    Lock JE et al (1983) Balloon dilation angioplasty of hypoplastic and stenotic pulmonary arteries. Circulation 67(5):962–967CrossRefPubMedGoogle Scholar
  31. 31.
    Mullins CE et al (1990) Balloon dilation of miscellaneous lesions: results of valvuloplasty and angioplasty of congenital anomalies registry. Am J Cardiol 65(11):802–803CrossRefPubMedGoogle Scholar
  32. 32.
    Rosenthal E, Qureshi SA, Tynan M (1995) Stent implantation for aortic recoarctation. Am Heart J 129(6):1220–1221CrossRefPubMedGoogle Scholar
  33. 33.
    Cheatham JP (2001) Stenting of coarctation of the aorta. Catheter Cardiovasc Interv 54(1):112–125CrossRefPubMedGoogle Scholar
  34. 34.
    Bergersen L et al (2011) Randomized trial of cutting balloon compared with high-pressure angioplasty for the treatment of resistant pulmonary artery stenosis. Circulation 124(22):2388–2396CrossRefPubMedGoogle Scholar
  35. 35.
    Bonhoeffer P et al (2002) Percutaneous insertion of the pulmonary valve. J Am Coll Cardiol 39(10):1664–1669CrossRefPubMedGoogle Scholar
  36. 36.
    McElhinney DB et al (2010) Short- and medium-term outcomes after transcatheter pulmonary valve placement in the expanded multicenter US melody valve trial. Circulation 122(5):507–516CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Jobeir A et al (2003) Use of low-dose ketamine and/or midazolam for pediatric cardiac catheterization. Pediatr Cardiol 24(3):236–243CrossRefPubMedGoogle Scholar
  38. 38.
    Perry JC, Garson A Jr (1990) Supraventricular tachycardia due to Wolff-Parkinson-White syndrome in children: early disappearance and late recurrence. J Am Coll Cardiol 16(5):1215–1220CrossRefPubMedGoogle Scholar
  39. 39.
    Kugler JD (1994) Radiofrequency catheter ablation for supraventricular tachycardia. Should it be used in infants and small children? Circulation 90(1):639–641CrossRefPubMedGoogle Scholar
  40. 40.
    Drago F et al (2005) Transvenous cryothermal catheter ablation of re-entry circuit located near the atrioventricular junction in pediatric patients: efficacy, safety, and midterm follow-up. J Am Coll Cardiol 45(7):1096–1103CrossRefPubMedGoogle Scholar
  41. 41.
    Papagiannis J et al (2010) Cryoablation versus radiofrequency ablation for atrioventricular nodal reentrant tachycardia in children: long-term results. Hellenic J Cardiol 51(2):122–126PubMedGoogle Scholar
  42. 42.
    Kugler JD et al (1997) Radiofrequency catheter ablation for paroxysmal supraventricular tachycardia in children and adolescents without structural heart disease. Pediatric EP Society, Radiofrequency Catheter Ablation Registry. Am J Cardiol 80(11):1438–1443CrossRefPubMedGoogle Scholar
  43. 43.
    Schaffer MS et al (1996) Inadvertent atrioventricular block during radiofrequency catheter ablation. Results of the Pediatric Radiofrequency Ablation Registry. Pediatric Electrophysiology Society. Circulation 94(12):3214–3220CrossRefPubMedGoogle Scholar
  44. 44.
    Manolis AS et al (1999) Radiofrequency ablation in older children and adolescents by an adult electrophysiology team. J Interv Card Electrophysiol 3(1):79–86CrossRefPubMedGoogle Scholar
  45. 45.
    Joung B et al (2006) Pediatric radiofrequency catheter ablation: sedation methods and success, complication and recurrence rates. Circ J 70(3):278–284CrossRefPubMedGoogle Scholar
  46. 46.
    Avidan MS et al (2008) Anesthesia awareness and the bispectral index. N Engl J Med 358(11):1097–1108CrossRefPubMedGoogle Scholar
  47. 47.
    Sebel PS et al (2004) The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg 99(3):833–839, table of contentsCrossRefPubMedGoogle Scholar
  48. 48.
    Myles PS et al (2004) Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet 363(9423):1757–1763CrossRefPubMedGoogle Scholar
  49. 49.
    Matthews R (2006) Isoproterenol-induced elevated bispectral indexes while undergoing radiofrequency ablation: a case report. AANA J 74(3):193–195PubMedGoogle Scholar
  50. 50.
    Sharpe MD et al (1994) The electrophysiologic effects of volatile anesthetics and sufentanil on the normal atrioventricular conduction system and accessory pathways in Wolff-Parkinson-White syndrome. Anesthesiology 80(1):63–70CrossRefPubMedGoogle Scholar
  51. 51.
    Lavoie J et al (1995) Effects of propofol or isoflurane anesthesia on cardiac conduction in children undergoing radiofrequency catheter ablation for tachydysrhythmias. Anesthesiology 82(4):884–887CrossRefPubMedGoogle Scholar
  52. 52.
    Erb TO et al (2002) Postoperative nausea and vomiting in children and adolescents undergoing radiofrequency catheter ablation: a randomized comparison of propofol- and isoflurane-based anesthetics. Anesth Analg 95(6):1577–1581, table of contentsCrossRefPubMedGoogle Scholar
  53. 53.
    Schaffer MS, Snyder AM, Morrison JE (2000) An assessment of desflurane for use during cardiac electrophysiological study and radiofrequency ablation of supraventricular dysrhythmias in children. Paediatr Anaesth 10(2):155–159CrossRefPubMedGoogle Scholar
  54. 54.
    Erb TO et al (2002) Comparison of electrophysiologic effects of propofol and isoflurane-based anesthetics in children undergoing radiofrequency catheter ablation for supraventricular tachycardia. Anesthesiology 96(6):1386–1394CrossRefPubMedGoogle Scholar
  55. 55.
    Zaballos M et al (2009) Cardiac electrophysiological effects of remifentanil: study in a closed-chest porcine model. Br J Anaesth 103(2):191–198CrossRefPubMedGoogle Scholar
  56. 56.
    Sharpe MD et al (1995) Propofol has no direct effect on sinoatrial node function or on normal atrioventricular and accessory pathway conduction in Wolff-Parkinson-White syndrome during alfentanil/midazolam anesthesia. Anesthesiology 82(4):888–895CrossRefPubMedGoogle Scholar
  57. 57.
    Colson P et al (1988) Mechanism of propofol bradycardia. Anesth Analg 67(9):906–907CrossRefPubMedGoogle Scholar
  58. 58.
    Hermann R, Vettermann J (1992) Change of ectopic supraventricular tachycardia to sinus rhythm during administration of propofol. Anesth Analg 75(6):1030–1032CrossRefPubMedGoogle Scholar
  59. 59.
    Hammer GB et al (2008) The effects of dexmedetomidine on cardiac electrophysiology in children. Anesth Analg 106(1):79–83, table of contentsCrossRefPubMedGoogle Scholar
  60. 60.
    Fujii K et al (2009) Fentanyl added to propofol anesthesia elongates sinus node recovery time in pediatric patients with paroxysmal supraventricular tachycardia. Anesth Analg 108(2):456–460CrossRefPubMedGoogle Scholar
  61. 61.
    Fujii K et al (2011) High-dose remifentanil suppresses sinoatrial conduction and sinus node automaticity in pediatric patients under propofol-based anesthesia. Anesth Analg 112(5):1169–1173CrossRefPubMedGoogle Scholar
  62. 62.
    Caldarone CA et al (2007) Initial experience with hybrid palliation for neonates with single-ventricle physiology. Ann Thorac Surg 84(4):1294–1300CrossRefPubMedGoogle Scholar
  63. 63.
    Akinturk H et al (2007) Hybrid transcatheter-surgical palliation: basis for univentricular or biventricular repair: the Giessen experience. Pediatr Cardiol 28(2):79–87CrossRefPubMedGoogle Scholar
  64. 64.
    Martin G, Bergersen L, Benson L, Beekman R, Holzer R, Ing F, Jenkins K, Moore J, Ringel R, Rome J, Ruiz C, Vincent R (2012). IMPACT RegistryTM (IMproving pediatric and adult congenital treatment): first data report. American College of Cardiology Scientific Sessions, ChicagoGoogle Scholar
  65. 65.
    Bergersen L et al (2010) Adverse event rates in congenital cardiac catheterization – a multi-center experience. Catheter Cardiovasc Interv: Off J Soc Card Angiogr Interv 75(3):389–400Google Scholar
  66. 66.
    Bergersen L et al (2008) Adverse event rates in congenital cardiac catheterization: a new understanding of risks. Congenit Heart Dis 3(2):90–105CrossRefPubMedGoogle Scholar
  67. 67.
    Huang YC et al (2009) Importance of prevention and early intervention of adverse events in pediatric cardiac catheterization: a review of three years of experience. Pediatr Neonatol 50(6):280–286CrossRefPubMedGoogle Scholar
  68. 68.
    Mehta R et al (2008) Complications of pediatric cardiac catheterization: a review in the current era. Catheter Cardiovasc Interv: Off J Soc Card Angiogr Interv 72(2):278–285CrossRefGoogle Scholar
  69. 69.
    Pigula FA et al (2000) Management of retroperitoneal arterial injury after heart catheterization in children. Ann Thorac Surg 69(5):1582–1584CrossRefPubMedGoogle Scholar
  70. 70.
    Venkatachalam KL et al (2009) Use of an autologous blood recovery system during emergency pericardiocentesis in the electrophysiology laboratory. J Cardiovasc Electrophysiol 20(3):280–283CrossRefPubMedGoogle Scholar
  71. 71.
    Bunch TJ et al (2005) Outcomes after cardiac perforation during radiofrequency ablation of the atrium. J Cardiovasc Electrophysiol 16(11):1172–1179CrossRefPubMedGoogle Scholar
  72. 72.
    Baker CM et al (2000) Pulmonary artery trauma due to balloon dilation: recognition, avoidance and management. J Am Coll Cardiol 36(5):1684–1690CrossRefPubMedGoogle Scholar
  73. 73.
    Arnold LW et al (1988) Transient unilateral pulmonary edema after successful balloon dilation of peripheral pulmonary artery stenosis. Am J Cardiol 62(4):327–330CrossRefPubMedGoogle Scholar
  74. 74.
    Schabelman E, Witting M (2010) The relationship of radiocontrast, iodine, and seafood allergies: a medical myth exposed. J Emerg Med 39(5):701–707CrossRefPubMedGoogle Scholar
  75. 75.
    Goldfarb S et al (2009) Contrast-induced acute kidney injury: specialty-specific protocols for interventional radiology, diagnostic computed tomography radiology, and interventional cardiology. Mayo Clin Proc Mayo Clin 84(2):170–179CrossRefPubMedGoogle Scholar
  76. 76.
    Brown JR et al (2009) Sodium bicarbonate plus N-acetylcysteine prophylaxis: a meta-analysis. JACC Cardiovasc Interv 2(11):1116–1124CrossRefPubMedGoogle Scholar
  77. 77.
    Brown JR, Thompson CA (2010) Contrast-induced acute kidney injury: the at-risk patient and protective measures. Curr Cardiol Rep 12(5):440–445CrossRefPubMedGoogle Scholar
  78. 78.
    Briguori C et al (2011) Nephrotoxicity of contrast media and protective effects of acetylcysteine. Arch Toxicol 85(3):165–173CrossRefPubMedGoogle Scholar
  79. 79.
    Justino H (2006) The ALARA concept in pediatric cardiac catheterization: techniques and tactics for managing radiation dose. Pediatr Radiol 36(Suppl 2):146–153CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Wagner LK (2006) Minimizing radiation injury and neoplastic effects during pediatric fluoroscopy: what should we know? Pediatr Radiol 36(Suppl 2):141–145CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Hirshfeld JW Jr et al (2004) ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures. A report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. J Am Coll Cardiol 44(11):2259–2282CrossRefPubMedGoogle Scholar
  82. 82.
    Samyn MM (2004) A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. Int J Cardiovasc Imaging 20(6):569–578CrossRefPubMedGoogle Scholar
  83. 83.
    Ehrenwerth J et al (2009) Practice advisory on anesthetic care for magnetic resonance imaging: a report by the Society of Anesthesiologists Task Force on Anesthetic Care for Magnetic Resonance Imaging. Anesthesiology 110(3): 459–79CrossRefGoogle Scholar
  84. 84.
    Cindea N et al (2010) Reconstruction from free-breathing cardiac MRI data using reproducing kernel Hilbert spaces. Magn Reson Med 63(1):59–67PubMedGoogle Scholar
  85. 85.
    Philbin MK, Taber KH, Hayman LA (1996) Preliminary report: changes in vital signs of term newborns during MR. AJNR Am J Neuroradiol 17(6):1033–1036PubMedGoogle Scholar
  86. 86.
    Battin M et al (1998) Physiological stability of preterm infants during magnetic resonance imaging. Early Hum Dev 52(2):101–110CrossRefPubMedGoogle Scholar
  87. 87.
    Taber KH et al (1998) Vital sign changes during infant magnetic resonance examinations. J Magn Reson Imaging 8(6):1252–1256CrossRefPubMedGoogle Scholar
  88. 88.
    Odegard KC et al (2004) Anaesthesia considerations for cardiac MRI in infants and small children. Paediatr Anaesth 14(6):471–476CrossRefPubMedGoogle Scholar
  89. 89.
    Sarikouch S et al (2009) Cardiovascular magnetic resonance imaging for intensive care infants: safe and effective? Pediatr Cardiol 30(2):146–152CrossRefPubMedGoogle Scholar
  90. 90.
    Shellock FG (2002) Magnetic resonance safety update 2002: implants and devices. J Magn Reson Imaging 16(5):485–496CrossRefPubMedGoogle Scholar
  91. 91.
    Nazarian S et al (2011) A prospective evaluation of a protocol for magnetic resonance imaging of patients with implanted cardiac devices. Ann Intern Med 155(7):415–424CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Botvinick EH (2009) Current methods of pharmacologic stress testing and the potential advantages of new agents. J Nucl Med Technol 37(1):14–25CrossRefPubMedGoogle Scholar
  93. 93.
    MHRA (2007) Safety guidelines for magnetic resonance imaging equipment in clinical use – DB 2007(03)
  94. 94.
    Dorfman AL et al (2007) Risk factors for adverse events during cardiovascular magnetic resonance in congenital heart disease. J Cardiovasc Magn Reson 9(5):793–798CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Department of Anesthesiology, Duke University Medical CenterDuke Children’s HospitalDurhamUSA
  2. 2.Division of Pediatric Cardiology, Duke University Medical CenterDuke Clinical Research InstituteDurhamUSA

Personalised recommendations