Encyclopedia of Color Science and Technology

2016 Edition
| Editors: Ming Ronnier Luo

Visual Evoked Potentials

  • Neil ParryEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-8071-7_107

Synonyms

Definition

The visual evoked potential (VEP) is a means of extracting from the spontaneous electrical activity in the brain, electrical changes that are directly related to a specific brain action. It is a means of analyzing the Electroencephalogram (EEG). The event-related information (“signal”) is extracted from the overall electrical activity (“noise”) by some form of correlation. Usually, repeated samples of EEG are triggered by a particular event (e.g., an abrupt visual change) and averaged together. Because this event causes a particular type of brain response, at a predictable time, the process of averaging these time locked responses accentuates the event-related signal and smoothes out any uncorrelated activity. By using a stimulus that only contains time-locked changes in color, the VEP can provide an indirect measure of color information processing in the brain.

Scalp-Recorded Electrical Signals from the Brain

The brain is...

This is a preview of subscription content, log in to check access.

Supplementary material

Video. 1 (wmv 5193 kb)

References

  1. 1.
    Carden, D., Kulikowski, J.J., Murray, I.J., Parry, N.R.A.: Human occipital potentials evoked by the onset of equiluminant chromatic gratings. J. Physiol. 369, 44P (1985)Google Scholar
  2. 2.
    Murray, I.J., Parry, N.R.A., Carden, D., Kulikowski, J.J.: Human visual evoked potentials to chromatic and achromatic gratings. Clin. Vis. Sci. 1, 231–244 (1987)Google Scholar
  3. 3.
    Berninger, T.A., Arden, G.B., Hogg, C.R., Frumkes, T.E.: Separable evoked retinal and cortical potentials from each major visual pathway: preliminary results. Br. J. Ophthalmol. 73, 502–511 (1989)CrossRefGoogle Scholar
  4. 4.
    Rabin, J., Switkes, E., Crognale, M., Schneck, M.E., Adams, A.J.: Visual-evoked potentials in 3-dimensional color space – correlates of spatiochromatic processing. Vision Res. 34, 2657–2671 (1994). doi:10.1016/0042-6989(94)90222-4CrossRefGoogle Scholar
  5. 5.
    Porciatti, V., Sartucci, F.: Normative data for onset VEPs to red-green and blue-yellow chromatic contrast. Clin. Neurophysiol. 110, 772–781 (1999)CrossRefGoogle Scholar
  6. 6.
    Lee, B.B.: Visual pathways and psychophysical channels in the primate. J. Physiol. 589, 41–47 (2011). doi:10.1113/jphysiol.2010.192658[pii] jphysiol.2010.192658ADSCrossRefGoogle Scholar
  7. 7.
    Kulikowski, J.J., Parry, N.R.A.: Human occipital potentials evoked by achromatic or chromatic checkerboards and gratings. J. Physiol. 388, 45P (1987)Google Scholar
  8. 8.
    Derrington, A.M., Krauskopf, J., Lennie, P.: Chromatic mechanisms in lateral geniculate nucleus of macaque. J. Physiol. 357, 241–265 (1984)CrossRefGoogle Scholar
  9. 9.
    MacLeod, D.I.A., Boynton, R.M.: Chromaticity diagram showing cone excitation by stimuli of equal luminance. J. Opt. Soc. Am. 69, 1183 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    Mullen, K.T.: The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings. J. Physiol. 359, 381–400 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    Robson, A.G., Parry, N.R.A.: Measurement of macular pigment optical density and distribution using the steady-state visual evoked potential. Vis. Neurosci. 25, 575–583 (2008)CrossRefGoogle Scholar
  12. 12.
    Parry, N.R.A., Robson, A.G.: Optimization of large field tritan stimuli using concentric isoluminant annuli. J. Vis. 12(12): 11 (2012). doi:10.1167/12.12.11Google Scholar
  13. 13.
    Parry, N.R.A., Murray, I.J.: Electrophysiological investigation of adult and infant colour vision deficiencies. In: Dickinson, C.M, Murray, I.J, Carden, D (eds.) John Dalton’s Colour Vision Legacy. Taylor Francis (1997)Google Scholar
  14. 14.
    Crognale, M.A.: Development, maturation, and aging of chromatic visual pathways: VEP results. J. Vis. 2(6): 2 (2002). doi:10.1167/2.6.2Google Scholar
  15. 15.
    Kelly, J.P., Crognale, M.A., Weiss, A.H.: ERGs, cone-isolating VEPs and analytical techniques in children with cone dysfunction syndromes. Doc. Ophthalmol. 106, 289–304 (2003). doi:10.1023/a:1022909328103CrossRefGoogle Scholar
  16. 16.
    Tobimatsu, S., Celesia, G.G.: Studies of human visual pathophysiology with visual evoked potentials. Clin. Neurophysiol. 117, 1414–1433 (2006). doi:10.1016/j.clinph.2006.01.004CrossRefGoogle Scholar
  17. 17.
    Gomes, B.D., et al.: Normal and dichromatic color discrimination measured with transient visual evoked potential. Vis. Neurosci. 23, 617–627 (2006). doi:10.1017/s0952523806233194CrossRefGoogle Scholar
  18. 18.
    Pompe, M.T., Kranjc, B.S., Brecelj, J.: Chromatic VEP in children with congenital colour vision deficiency. Ophthalmic Physiol. Opt. 30, 693–698 (2010). doi:10.1111/j.1475-1313.2010.00739.xCrossRefGoogle Scholar
  19. 19.
    Russell, M.H.A., Murray, I.J., Metcalfe, R.A., Kulikowski, J.J.: The visual deficit in multiple sclerosis: a combined psychophysical and electrophysiological investigation. Brain 114, 2419–2435 (1991)CrossRefGoogle Scholar
  20. 20.
    Porciatti, V., Sartucci, F.: Retinal and cortical evoked responses to chromatic contrast stimuli – specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119, 723–740 (1996). doi:10.1093/brain/119.3.723CrossRefGoogle Scholar
  21. 21.
    Tobimatsu, S., Kato, M.: Multimodality visual evoked potentials in evaluating visual dysfunction in optic neuritis. Neurology 50, 715–718 (1998)CrossRefGoogle Scholar
  22. 22.
    Horn, F.K., Bergua, A., Junemann, A., Korth, M.: Visual evoked potentials under luminance contrast and color contrast stimulation in glaucoma diagnosis. J. Glaucoma 9, 428–437 (2000)CrossRefGoogle Scholar
  23. 23.
    Sartucci, F., Murri, L., Orsini, C., Porciatti, V.: Equiluminant red-green and blue-yellow VEPs in multiple sclerosis. J. Clin. Neurophysiol. 18, 583–591 (2001). doi:10.1097/00004691-200111000-00010CrossRefGoogle Scholar
  24. 24.
    Wu, F., Yang, Y., Li, H., Odom, J.V.: Relationship of chromatic visual-evoked potentials and the changes of foveal photoreceptor layer in central serous chorioretinopathy patients. Ophthalmic Physiol. Opt. 31, 381–388 (2011). doi:10.1111/j.1475-1313.2011.00839.xCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Vision Science CentreManchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science CentreManchesterUK
  2. 2.Centre for Ophthalmology and Vision Sciences, Institute of Human DevelopmentUniversity of ManchesterManchesterUK