Advertisement

Bin Packing Approximation Algorithms: Survey and Classification

  • Edward G. Coffman Jr.Email author
  • János CsirikEmail author
  • Gábor GalambosEmail author
  • Silvano MartelloEmail author
  • Daniele VigoEmail author
Reference work entry

Abstract

The survey presents an overview of approximation algorithms for the classical bin packing problem and reviews the more important results on performance guarantees. Both on-line and off-line algorithms are analyzed. The investigation is extended to variants of the problem through an extensive review of dual versions, variations on bin sizes and item packing, as well as those produced by additional constraints. The bin packing papers are classified according to a novel scheme that allows one to create a compact synthesis of the topic, the main results, and the corresponding algorithms.

Notes

Acknowledgements

The second author was supported by Project “TÁMOP-4.2.1/B-09/1/KONV-2010-0005 - Creating the Center of Excellence at the University of Szeged,” supported by the European Union and cofinanced by the European Regional Development Fund.

Recommended Reading

  1. 1.
    M. Adler, P.B. Gibbons, Y. Matias, Scheduling space sharing for internet advertising. J. Sched. 5, 103–119 (2002) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}\vert mutex.\) MathSciNetzbMATHGoogle Scholar
  2. 2.
    S. Albers, Better bounds for on-line scheduling, in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, El Paso, TX, 1997, pp. 130–139 \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\) Google Scholar
  3. 3.
    N. Alon, Y. Azar, G.J. Woeginger, T. Yadid, Approximation schemes for scheduling, in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA (SIAM, 1997), pp. 493–500 \(\bullet \ \ mincap\vert \mathit{off - line}\vert PTAS.\) Google Scholar
  4. 4.
    R.J. Anderson, E.W. Mayr, M.K. Warmuth, Parallel approximation algorithms for bin packing. Inf. Comput. 82, 262–277 (1989) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}.\) MathSciNetzbMATHGoogle Scholar
  5. 5.
    S.F. Assmann, Problems in Discrete Applied Mathematics. PhD thesis, Mathematics Department MIT, Cambridge, MA, 1983Google Scholar
  6. 6.
    S.F. Assmann, D.S. Johnson, D.J. Kleitman, J.Y.-T. Leung, On a dual version of the one-dimensional bin packing problem. J. Algorithms 5, 502–525 (1984) \(\bullet \ \ cover\vert \mathit{on - line},\mathit{off - line},\mathit{open - end}\vert R_{A}^{\infty }.\) Google Scholar
  7. 7.
    Y. Azar, O. Regev, On-line bin-stretching. Theor. Comput. Sci. 268, 17–41 (2001) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}\vert stretching.\) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Y. Azar, J. Boyar, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, Fair versus unrestricted bin packing, in SWAT ’00, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway. Lecture Notes in Computer Science, vol. 1851 (Springer, 2000), pp. 200–213. This is the preliminary version of [9]Google Scholar
  9. 9.
    Y. Azar, J. Boyar, L. Epstein, L.M. Favrholdt, K.S. Larsen, M.N. Nielsen, Fair versus unrestricted bin packing. Algorithmica 34, 181–196 (2002) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  10. 10.
    L. Babel, B. Chen, H. Kellerer, V. Kotov, On-line algorithms for cardinality constrained bin packing problems, in ISAAC 2001, Christchurch, New Zealand. Lecture Notes in Computer Science, vol. 2223 (Springer, 2001), pp. 695–706. This is the preliminary version of [11]Google Scholar
  11. 11.
    L. Babel, B. Chen, H. Kellerer, V. Kotov, On-line algorithms for cardinality constrained bin packing problems. Discret. Appl. Math. 143, 238–251 (2004) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  12. 12.
    B.S. Baker, A new proof for the first-fit decreasing bin-packing algorithm. J. Algorithms 6, 49–70 (1985) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  13. 13.
    B.S. Baker, E.G. Coffman Jr., A tight asymptotic bound for next-fit-decreasing bin-packing. SIAM J. Algebra. Discret. Methods 2, 147–152 (1981) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\) Google Scholar
  14. 14.
    J. Balogh, J. Békési, G. Galambos, M.C. Markót, Improved lower bounds for semi-online bin packing problems. Computing 84, 139–148 (2009) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }\mathit{bounds}.\) MathSciNetzbMATHGoogle Scholar
  15. 15.
    J. Balogh, J. Békési, G. Galambos, New lower bounds for certain bin packing algorithms, in WAOA 2010, Liverpool, UK. Lecture Notes in Computer Science, vol. 6534 (Springer, 2011), pp. 25–36 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\) Google Scholar
  16. 16.
    N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects, in 2nd IFIP International Conference on Theoretical Computer Science (TCS 2002), vol. 223 (Montréal, Québec, Canada, 2001), pp. 38–46Google Scholar
  17. 17.
    N. Bansal, Z. Liu, A. Sankar, Bin-packing with fragile objects and frequency allocation in cellular networks. Wirel. Netw. 15, 821–830 (2009) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert controllable.\) Google Scholar
  18. 18.
    A. Bar-Noy, R.E. Ladner, T. Tamir, Windows scheduling as a restricted version of bin packing. ACM Trans. Algorithms 3, 1–22 (2007) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}\vert discrete.\) MathSciNetGoogle Scholar
  19. 19.
    Y. Bartal, A. Fiat, H. Karloff, R. Vohra, New algorithms for an ancient scheduling problem, in Proceedings of the 24th Annual ACM Symposium on Theory of Computing, Victoria, Canada, 1992, pp. 51–58 \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\) Google Scholar
  20. 20.
    Y. Bartal, H. Karloff, Y. Rabani, A better lower bound for on-line scheduling. Inf. Process. Lett. 50, 113–116 (1994) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  21. 21.
    W. Bein, J.R. Correa, X. Han, A fast asymptotic approximation scheme for bin packing with rejection. Theor. Comput. Sci. 393, 14–22 (2008) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert \{B_{i}\},controllable.\) MathSciNetzbMATHGoogle Scholar
  22. 22.
    J. Békési, G. Galambos, A 5/4 linear time bin packing algorithm. Technical report OR-97-2, Teachers Trainer College, Szeged, Hungary, 1997. This is the preliminary version of [23]Google Scholar
  23. 23.
    J. Békési, G. Galambos, H. Kellerer, A 5/4 linear time bin packing algorithm. J. Comput. Syst. Sci. 60, 145–160 (2000) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{linear - time}\vert R_{A}^{\infty }.\) zbMATHGoogle Scholar
  24. 24.
    R. Berghammer, F. Reuter, A linear approximation algorithm for bin packing with absolute approximation factor 3/2. Sci. Comput. Program. 48, 67–80 (2003) \(\bullet \ \ pack\vert \mathit{linear - time}\vert R_{A}.\) MathSciNetzbMATHGoogle Scholar
  25. 25.
    V. Bilo, On the packing of selfish items, in Proceedings of the 20th International Parallel and Distributed Processing Sysmposium (IPDPS), Rhodes Island, Greece (IEEE, 2006), pp. 25–29 \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }.\) Google Scholar
  26. 26.
    J. Blazewicz, K. Ecker, A linear time algorithm for restricted bin packing and scheduling problems. Oper. Res. Lett. 2, 80–83 (1983) \(\bullet \ \ mincap,pack\vert \mathit{off - line},\mathit{linear - time}\vert \mathit{running - time}\vert restricted.\) MathSciNetzbMATHGoogle Scholar
  27. 27.
    J. Boyar, L.M. Favrholdt, The relative worst order ratio for online algorithms. ACM Trans. Algorithms 3, 1–24 (2007) \(\bullet \ \ pack,maxcard(subset)\vert \mathit{on - line}.\) MathSciNetGoogle Scholar
  28. 28.
    J. Boyar, K.S. Larsen, M.N. Nielsen, The accomodation function: a generalization of the competitive ratio. SIAM J. Comput. 31, 233–258 (2001) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\mathit{bound}\vert restricted.\) MathSciNetzbMATHGoogle Scholar
  29. 29.
    J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wøhlk, The maximum resource bin packing problem, in Fundamentals of Computation Theory. Lecture Notes in Computer Science, vol. 3623 (Springer, Berlin/New York, 2005), pp. 387–408. This is the preliminary version of [30]Google Scholar
  30. 30.
    J. Boyar, L. Epstein, L.M. Favrholdt, J.S. Kohrt, K.S. Larsen, M.M. Pedersen, S. Wøhlk, The maximum resource bin packing problem. Theor. Comput. Sci. 362, 127–139 (2006) \(\bullet \ \ maxpack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\) zbMATHGoogle Scholar
  31. 31.
    J. Boyar, L. Epstein, A. Levin, Tight results for Next Fit and Worst Fit with resource augmentation. Theor. Comput. Sci. 411, 2572–2580 (2010) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert stretching.\) MathSciNetzbMATHGoogle Scholar
  32. 32.
    D.J. Brown, A lower bound for on-line one-dimensional bin-packing algorithms. Technical report R-864, University of Illinois, Coordinated Science Laboratory, Urbana, IL, 1979 \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\) Google Scholar
  33. 33.
    R.E. Burkard, G. Zhang, Bounded space on-line variable-sized bin packing. Acta Cybern. 13, 63–76 (1997) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) MathSciNetzbMATHGoogle Scholar
  34. 34.
    A. Caprara, U. Pferschy, Worst-case analysis of the subset sum algorithm for bin packing. Oper. Res. Lett. 32, 159–166 (2004) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  35. 35.
    W.-T. Chan, F.Y.L. Chin, D. Ye, G. Zhang, Y. Zhang, Online bin packing of fragile objects with application in cellular networks. JOCO 14(4), 427–435 (2007) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert controllable.\) MathSciNetzbMATHGoogle Scholar
  36. 36.
    J.W. Chan, T. Lam, P.W.H. Wong, Dynamic bin packing of unit fractions items. Theor. Comput. Sci. 409, 521–529 (2008) \(\bullet \ \ pack\vert \mathit{on - line},dynamic\vert R_{A}^{\infty }\mathit{bounds}\vert discrete.\) MathSciNetzbMATHGoogle Scholar
  37. 37.
    J.W. Chan, P.W.H. Wong, F.C.C. Yung, On dynamic bin packing: an improved lower bound and resource augmentation analysis. Algorithmica 53, 172–206 (2009) \(\bullet \ \ pack\vert \mathit{on - line},dynamic\vert R_{A}^{\infty }\mathit{bound}\vert discrete,stretching.\) MathSciNetzbMATHGoogle Scholar
  38. 38.
    B. Chandra, Does randomization help in on-line bin packing? Inf. Process. Lett. 43, 15–19 (1992) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\) Google Scholar
  39. 39.
    A.K. Chandra, D.S. Hirschler, C.K. Wong, Bin packing with geometric constraints in computer network design. Oper. Res. 26, 760–772 (1978) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  40. 40.
    C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput. 35, 713–728 (2005)MathSciNetGoogle Scholar
  41. 41.
    B. Chen, A. van Vliet, G.J. Woeginger, New lower and upper bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230 (1994) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}\mathit{bounds}.\) MathSciNetzbMATHGoogle Scholar
  42. 42.
    E.G. Coffman Jr., An introduction to combinatorial models of dynamic storage allocation. SIAM Rev. 25, 311–325 (1983)MathSciNetGoogle Scholar
  43. 43.
    E.G. Coffman Jr., J. Csirik, Performance guarantees for one-dimensional bin packing, in Handbook of Approximation Algorithms and Metaheuristics, chapter 32, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 32–1–32–18Google Scholar
  44. 44.
    E.G. Coffman Jr., J. Csirik, A classification scheme for bin packing theory. Acta Cybern. 18, 47–60 (2007) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}.\) Google Scholar
  45. 45.
    E.G. Coffman Jr., J.Y.-T. Leung, Combinatorial analysis of an efficient algorithm for processor and storage allocation. SIAM J. Comput. 8, 202–217 (1979) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}\mathit{bound}.\) MathSciNetGoogle Scholar
  46. 46.
    E.G. Coffman Jr., G.S. Lueker, Probabilistic Analysis of Packing and Partitioning Algorithms (Wiley, New York, 1991)Google Scholar
  47. 47.
    E.G. Coffman Jr., M.R. Garey, D.S. Johnson, An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7, 1–17 (1978) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}\mathit{bound}.\) MathSciNetGoogle Scholar
  48. 48.
    E.G. Coffman Jr., J.Y.-T. Leung, D.W. Ting, Bin packing: maximizing the number of pieces packed. Acta Inform. 9, 263–271 (1978) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}.\) Google Scholar
  49. 49.
    E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Dynamic bin packing. SIAM J. Comput. 12, 227–258 (1983) \(\bullet \ \ pack\vert dynamic,repack\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) Google Scholar
  50. 50.
    E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin-packing: An updated survey, in Algorithm Design for Computer System Design, ed. by G. Ausiello, M. Lucertini, P. Serafini (Springer, Wien, 1984), pp. 49–106Google Scholar
  51. 51.
    E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Bin packing with divisible item sizes. J. Complex. 3, 405–428 (1987) \(\bullet \ \ pack,cover,maxcard(subset)\vert \mathit{on - line},\mathit{off - line},dynamic\vert \mathit{complexity}\vert \{B_{i}\},restricted.\) Google Scholar
  52. 52.
    E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Approximation algorithms for bin packing: a survey, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 46–93Google Scholar
  53. 53.
    E.G. Coffman Jr., G. Galambos, S. Martello, D. Vigo, Bin packing approximation algorithms: Combinatorial analysis, in Handbook of Combinatorial Optimization, ed. by D.-Z. Du, P.M. Pardalos (Kluwer, Boston, 1999)Google Scholar
  54. 54.
    E.G. Coffman Jr., J. Csirik, J.Y.-T. Leung, Variable-sized bin packing and bin covering, in Handbook of Approximation Algorithms and Metaheuristics, chapter 34, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 34–1–34–11Google Scholar
  55. 55.
    E.G. Coffman Jr., J. Csirik, J.Y-T. Leung, Variants of classical one-dimensional bin packing, in Handbook of Approximation Algorithms and Metaheuristics, chapter 33, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 33–1–33–13Google Scholar
  56. 56.
    J. Csirik, An on-line algorithm for variable-sized bin packing. Acta Inform. 26, 697–709 (1989) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) Google Scholar
  57. 57.
    J. Csirik, The parametric behaviour of the first fit decreasing bin-packing algorithm. J. Algorithms 15, 1–28 (1993) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  58. 58.
    J. Csirik, B. Imreh, On the worst-case performance of the Next-k-Fit bin-packing heuristic. Acta Cybern. 9, 89–105 (1989) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bounds}.\) MathSciNetGoogle Scholar
  59. 59.
    J. Csirik, D.S. Johnson, Bounded space on-line bin-packing: best is better than first, in Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, 1991, pp. 309–319. This is the preliminary version of [60]Google Scholar
  60. 60.
    J. Csirik, D.S. Johnson, Bounded space on-line bin-packing: best is better than first. Algorithmica 31, 115–138 (2001) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  61. 61.
    J. Csirik, V. Totik, On-line algorithms for a dual version of bin packing. Discret. Appl. Math. 21, 163–167 (1988) \(\bullet \ \ cover\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  62. 62.
    J. Csirik, G.J. Woeginger, Online packing and covering problems, in Online Algorithms: The State of the Art, ed. by A. Fiat, G.J. Woeginger. Lecture Notes in Computer Science, vol. 1442 (Springer, Berlin, 1998), pp. 154–177Google Scholar
  63. 63.
    J. Csirik, G.J. Woeginger, Resource augmentation for online bounded space bin packing. J. Algorithms 44, 308–320 (2002) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert stretching.\) MathSciNetzbMATHGoogle Scholar
  64. 64.
    J. Csirik, G. Galambos, G. Turan, Some results on bin-packing, in Proceedings of the EURO VI Conference, Vienna, Austria, 1983, pp. 52 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }.\) Google Scholar
  65. 65.
    J. Csirik, D.S. Johnson, C. Kenyon, Better approximation algorithms for bin covering, in Proceedings of the Twelft Annual ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, 2001, pp. 557–566 \(\bullet \ \ cover\vert \mathit{off - line}\vert PTAS.\) Google Scholar
  66. 66.
    M. Demange, P. Grisoni, V.T. Paschos, Differential approximation algorithms for some combinatorial optimization problems. Theor. Comput. Sci. 209, 107–122 (1998) \(\bullet \ \ pack\vert \mathit{off - line}.\) Google Scholar
  67. 67.
    M. Demange, J. Monnot, V.T. Paschos, Bridging gap between standard and differential polynomial approximation: the case of bin-packing. Appl. Math. Lett. 12, 127–133 (1999) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  68. 68.
    G. Dósa, The tight bound of first fit decreasing bin-packing algorithm is \(FFD(I) \leq (11/9)\ {\it \text{OPT}}(I) + 6/9\), in Combinatorics, Algorithms, Probabilistic and Experimental Methodologiesed. by B. Chen, M. Paterson, G. Zhang. Lecture Notes in Computer Science, vol. 4614 (Springer, Berlin, 2007), pp. 1–11 \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) Google Scholar
  69. 69.
    G. Dósa, Y. He, Bin packing problems with rejection penalties and their dual problems. Inf. Comput. 204, 795–815 (2006) \(\bullet \ \ pack,cover\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}\vert controllable.\) zbMATHGoogle Scholar
  70. 70.
    L. Epstein, Bin packing with rejection revisited, in WAOA, Zurich, Switzerland. Lecture Notes in Computer Science, vol. 4368 (Springer, 2006), pp. 146–159. This is the preliminary version of [73]Google Scholar
  71. 71.
    L. Epstein, Online bin packing with cardinality constraints. SIAM J. Discret. Math. 20, 1015–1030 (2007) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }\vert \{B_{i}\},stretching,card(B) \leq k.\) Google Scholar
  72. 72.
    L. Epstein, On online bin packing with LIB constraints. Nav. Res. Logist. (NRL) 56, 780–786 (2009) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k,controllable.\) zbMATHGoogle Scholar
  73. 73.
    L. Epstein, Bin packing with rejection revisited. Algorithmica 56, 505–528 (2010) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound},PTAS\vert controllable.\) MathSciNetzbMATHGoogle Scholar
  74. 74.
    L. Epstein, L.M. Favrholdt, On-line maximizing the number of items packed in variable-sized bins. Acta Cybern. 16, 57–66 (2003) \(\bullet \ \ maxcard(subset)\vert \mathit{on - line},conservative\vert R_{A}\vert \{B_{i}\}.\) Google Scholar
  75. 75.
    L. Epstein, E. Kleiman, Resource augmented semi-online bounded space bin packing. Discret. Appl. Math. 157, 2785–2798 (2009) \(\bullet \ \ pack\vert \mathit{bounded - space},repack\vert R_{A}^{\infty }\vert stretching.\) MathSciNetzbMATHGoogle Scholar
  76. 76.
    L. Epstein, E. Kleiman, Selfish bin packing. Algorithmica (2011). To appear (online first: doi:10.1007/s00453-009-9348-6) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bounds}.\) Google Scholar
  77. 77.
    L. Epstein, A. Levin, More on online bin packing with two item sizes. Discret. Optim. 5(4), 705–713 (2008) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert restricted,s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  78. 78.
    L. Epstein, A. Levin, On bin packing with conflicts. SIAM J. Optim. 19, 1270–1298 (2008) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert mutex.\) MathSciNetzbMATHGoogle Scholar
  79. 79.
    L. Epstein, R. van Stee, Multidimensional packing problems, in Handbook of Approximation Algorithms and Metaheuristics, chapter 35, ed. by T. Gonzales (Taylor and Francis Books/CRC, Boca Raton, 2006), pp. 35–1–35–15Google Scholar
  80. 80.
    L. Epstein, R. van Stee, Online bin packing with resource augmentation. Discret. Optim. 4, 322–333 (2007) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert stretching.\) zbMATHGoogle Scholar
  81. 81.
    L. Epstein, R. van Stee, Approximation schemes for packing splittable items with cardinality constraints, in WAOA, Eilat, Israel. Lecture Notes in Computer Science, vol. 4927 (Springer, 2008), pp. 232–245 \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert controllable.\) Google Scholar
  82. 82.
    L. Epstein, C. Imreh, A. Levin, Class constrained bin packing revisited. Theor. Comput. Sci. 411, 3073–3089 (2010) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },FPTAS\vert restricted,card(B) \leq k\mathit{colors}.\) MathSciNetzbMATHGoogle Scholar
  83. 83.
    U. Faigle, W. Kern, Gy. Turán, On the performance of on-line algorithms for partition problems. Acta Cybern. 9, 107–119 (1989) \(\bullet \ \ pack,mincap\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert restricted.\) zbMATHGoogle Scholar
  84. 84.
    W. Fernandez de la Vega, G.S. Lueker, Bin packing can be solved within \(1+\epsilon\) in linear time. Combinatorica 1, 349–355 (1981) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS.\) Google Scholar
  85. 85.
    L. Finlay, P. Manyem, Online LIB problems: heuristics for bin covering and lower bounds for bin packing. RAIRO Rech. Oper. 39, 163–183 (2005) \(\bullet \ \ pack,cover\vert \mathit{on - line}\vert R_{A}^{\infty }\vert controllable.\) MathSciNetzbMATHGoogle Scholar
  86. 86.
    D.C. Fisher, Next-fit packs a list and its reverse into the same number of bins. Oper. Res. Lett. 7, 291–293 (1988) \(\bullet \ \ pack\vert \mathit{bounded - space}.\) MathSciNetzbMATHGoogle Scholar
  87. 87.
    D.K. Friesen, Tighter bounds for the multifit processor scheduling algorithm. SIAM J. Comput. 13, 170–181 (1984) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  88. 88.
    D.K. Friesen, F.S. Kuhl, Analysis of a hybrid algorithm for packing unequal bins. SIAM J. Comput. 17, 23–40 (1988) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}\vert \{B_{i}\}.\) MathSciNetzbMATHGoogle Scholar
  89. 89.
    D.K. Friesen, M.A. Langston, Variable sized bin packing. SIAM J. Comput. 15, 222–230 (1986) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) zbMATHGoogle Scholar
  90. 90.
    D.K. Friesen, M.A. Langston, Analysis of a compound bin-packing algorithm. SIAM J. Discret. Math. 4, 61–79 (1991) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  91. 91.
    G. Galambos, A new heuristic for the classical bin-packing problem. Technical report 82, Institute fuer Mathematik, Augsburg, 1985 \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) Google Scholar
  92. 92.
    G. Galambos, Parametric lower bound for on-line bin-packing. SIAM J. Algebra. Discret. Meth. 7, 362–367 (1986) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  93. 93.
    G. Galambos, J.B.G. Frenk, A simple proof of Liang’s lower bound for on-line bin packing and the extension to the parametric case. Discret. Appl. Math. 41, 173–178 (1993) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  94. 94.
    G. Galambos, G.J. Woeginger, An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM J. Comput. 22, 345–355 (1993) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}.\) MathSciNetGoogle Scholar
  95. 95.
    G. Galambos, G.J. Woeginger, Repacking helps in bounded space on-line bin-packing. Computing 49, 329–338 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space},repack\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  96. 96.
    G. Galambos, G.J. Woeginger, On-line bin packing – a restricted survey. Z. Oper. Res. 42, 25–45 (1995)MathSciNetzbMATHGoogle Scholar
  97. 97.
    G. Gambosi, A. Postiglione, M. Talamo, New algorithms for on-line bin packing, in Algorithms and Complexity, ed. by R. Petreschi, G. Ausiello, D.P. Bovet (World Scientific, Singapore, 1990), pp. 44–59. This is the preliminary version of [99]Google Scholar
  98. 98.
    G. Gambosi, A. Postiglione, M. Talamo, On-line maintenance of an approximate bin-packing solution. Nord. J. Comput. 4, 151–166 (1997) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }.\) MathSciNetGoogle Scholar
  99. 99.
    G. Gambosi, A. Postiglione, M. Talamo, Algorithms for the relaxed online bin-packing model. SIAM J. Comput. 30, 1532–1551 (2000) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  100. 100.
    M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, New York, 1979)zbMATHGoogle Scholar
  101. 101.
    M.R. Garey, D.S. Johnson, Approximation algorithm for bin-packing problems: a survey, in Analysis and Design of Algorithm in Combinatorial Optimization, ed. by G. Ausiello, M. Lucertini (Springer, New York, 1981), pp. 147–172Google Scholar
  102. 102.
    M.R. Garey, D.S. Johnson, A 71/60 theorem for bin packing. J. Complex. 1, 65–106 (1985) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  103. 103.
    M.R. Garey, R.L. Graham, J.D. Ullmann, Worst-case analysis of memory allocation algorithms, in Proceedings of the 4th Annual ACM Symposium Theory of Computing, Denver, CO (ACM, New York, 1972), pp. 143–150Google Scholar
  104. 104.
    M.R. Garey, R.L. Graham, D.S. Johnson, A.C.-C. Yao, Resource constrained scheduling as generalized bin packing. J. Comb. Theory Ser. A 21, 257–298 (1976) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k,controllable.\) MathSciNetzbMATHGoogle Scholar
  105. 105.
    P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting-stock problem. Oper. Res. 9, 849–859 (1961)MathSciNetzbMATHGoogle Scholar
  106. 106.
    P.C. Gilmore, R.E. Gomory, A linear programming approach to the cutting stock problem – (Part II). Oper. Res. 11, 863–888 (1963)zbMATHGoogle Scholar
  107. 107.
    S.W. Golomb, On certain nonlinear recurring sequences. Am. Math. Mon. 70, 403–405 (1963)MathSciNetzbMATHGoogle Scholar
  108. 108.
    R.L. Graham, Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)Google Scholar
  109. 109.
    R.L. Graham, Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 263–269 (1969) \(\bullet \ \ mincap\vert \mathit{on - line},\mathit{off - line}\vert R_{A}.\) Google Scholar
  110. 110.
    R.L. Graham, Bounds on multiprocessing anomalies and related packing algorithms, in Proceedings of 1972 Spring Joint Computer Conference (AFIPS Press, Montvale, 1972), pp. 205–217 \(\bullet \ \ pack,mincap\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\mathit{bound}.\) Google Scholar
  111. 111.
    E.F. Grove, Online bin packing with lookahead, in Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA (SIAM, 1995), pp. 430–436 \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }\mathit{bound}.\) Google Scholar
  112. 112.
    G. Gutin, T.R. Jensen, A. Yeo, Batched bin packing. Discret. Optim. 2, 71–82 (2005) \(\bullet \ \ pack\vert \mathit{on - line},repack\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  113. 113.
    G. Gutin, T.R. Jensen, A. Yeo, On-line bin packing with two item sizes. Algorithm. Oper. Res. 1, 72–78 (2006) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\vert restricted.\) MathSciNetzbMATHGoogle Scholar
  114. 114.
    L.A. Hall, Approximation algorithms for scheduling, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 1–45Google Scholar
  115. 115.
    D.S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems (PWS Publishing Company, Boston, 1997)Google Scholar
  116. 116.
    D.S. Hochbaum, Various notions of approximation: good, better, best, and more, in Approximation Algorithms for NP-Hard Problems, ed. by D.S. Hochbaum (PWS Publishing Company, Boston, 1997), pp. 389–391Google Scholar
  117. 117.
    D.S. Hochbaum, D.B. Shmoys, A packing problem you can almost solve by sitting on your suitcase. SIAM J. Algebra. Discret. Methods 7, 247–257 (1986) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{complexity}\vert restricted.\) MathSciNetzbMATHGoogle Scholar
  118. 118.
    D.S Hochbaum, D.B. Shmoys, Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}.\) MathSciNetGoogle Scholar
  119. 119.
    M. Hofri, Analysis of Algorithms (Oxford University Press, New York, 1995)zbMATHGoogle Scholar
  120. 120.
    Z. Ivković, E. Lloyd, Fully dynamic algorithms for bin packing: being myopic helps, in Proceedings of the 1st European Symposium on Algorithms. Lecture Notes in Computer Science, vol. 726 (Springer, New York, 1993), pp. 224–235. This is the preliminary version of [122]Google Scholar
  121. 121.
    Z. Ivković, E. Lloyd, Partially dynamic bin packing can be solved within \(1+\epsilon\) in (amortized) polylogarithmic time. Inf. Process. Lett. 63, 45–50 (1997) \(\bullet \ \ pack\vert dynamic\vert PTAS.\) Google Scholar
  122. 122.
    Z. Ivković, E. Lloyd, Fully dynamic algorithms for bin packing: being (mostly) myopic helps. SIAM J. Comput. 28, 574–611 (1998) \(\bullet \ \ pack\vert dynamic,repack\vert R_{A}^{\infty }.\) zbMATHGoogle Scholar
  123. 123.
    K. Jansen, S. Öhring, Approximation algorithms for time constrained scheduling. Inf. Comput. 132, 85–108 (1997) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}\mathit{bound}\vert mutex.\) zbMATHGoogle Scholar
  124. 124.
    K. Jansen, R. Solis-Oba, An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306, 543–551 (2003) \(\bullet \ \ cover\vert \mathit{off - line}\vert FPTAS.\) MathSciNetzbMATHGoogle Scholar
  125. 125.
    D.S. Johnson, Fast allocation algorithms, in Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, New York, 1972, pp. 144–154Google Scholar
  126. 126.
    D.S. Johnson, Near-Optimal Bin Packing Algorithms. PhD thesis, MIT, Cambridge, MA, 1973Google Scholar
  127. 127.
    D.S. Johnson, Fast algorithms for bin packing. J. Comput. Syst. Sci. 8, 272–314 (1974) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\) zbMATHGoogle Scholar
  128. 128.
    D.S. Johnson, The NP-completeness column: an ongoing guide. J. Algorithms 3, 89–99 (1982)MathSciNetzbMATHGoogle Scholar
  129. 129.
    D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, R.L. Graham, Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Comput. 3, 256–278 (1974) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },R_{A}\vert s_{i} \leq 1/k.\) MathSciNetGoogle Scholar
  130. 130.
    J. Kang, S. Park, Algorithms for the variable sized bin packing problem. Eur. J. Oper. Res. 147, 365–372 (2003) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) MathSciNetzbMATHGoogle Scholar
  131. 131.
    D.R. Karger, S.J. Phillips, E. Torng, A better algorithm for an ancient scheduling problem. J. Algorithms 20, 400–430 (1996) \(\bullet \ \ mincap\vert \mathit{on - line}\vert R_{A}.\) MathSciNetzbMATHGoogle Scholar
  132. 132.
    N. Karmarkar, R.M. Karp, An efficient approximation scheme for the one-dimensional bin-packing problem, in Proceedings of the 23rd Annual IEEE Symposium on Foundations Computer Science, Chicago, IL, 1982, pp. 312–320 \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS.\) Google Scholar
  133. 133.
    G.Y. Katona, Edge disjoint polyp packing. Discret. Appl. Math. 78, 133–152 (1997) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bounds}.\) MathSciNetzbMATHGoogle Scholar
  134. 134.
    H. Kellerer, A polynomial time approximation scheme for the multiple knapsack problem, in RANDOM-APPROX, Berkeley, CA. Lecture Notes in Computer Science, vol. 1671 (Springer, 1999), pp. 51–62Google Scholar
  135. 135.
    H. Kellerer, U. Pferschy, Cardinality constrained bin-packing problems. Ann. Oper. Res. 92, 335–348 (1999) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert card(B) \leq k.\) MathSciNetzbMATHGoogle Scholar
  136. 136.
    C. Kenyon, Best-fit bin-packing with random order, in Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms Atlanta, GA (ACM/SIAM, Philadelphia, 1996), pp. 359–364 \(\bullet \ \ pack\vert \mathit{on - line}.\) Google Scholar
  137. 137.
    K.A. Kierstead, W.T. Trotter, An extremal problem in recursive combinatorics. Congr. Numer. 33, 143–153 (1981)MathSciNetGoogle Scholar
  138. 138.
    N.G. Kinnersley, M.A. Langston, Online variable-sized bin packing. Discret. Appl. Math. 22, 143–148 (1988–1989) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) MathSciNetGoogle Scholar
  139. 139.
    K.L. Krause, Y.Y. Shen, H.D. Schwetman, Analysis of several task-scheduling algorithms for a model of multiprogramming computer systems. J. ACM 22, 522–550 (1975) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\mathit{bound}\vert card(B) \leq k.\) MathSciNetzbMATHGoogle Scholar
  140. 140.
    M.A. Langston, Improved 0/1 interchanged scheduling. BIT 22, 282–290 (1982) \(\bullet \ \ maxcard(subset)\vert \mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) zbMATHGoogle Scholar
  141. 141.
    E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and scheduling: algorithms and complexity, in Logistics of Production and Inventory, ed. by S.C. Graves, A.H.G. Rinnooy Kan, P.H. Zipkin. Handbooks in Operations Research and Management Science, vol. 4 (North-Holland, Amsterdam, 1993), pp. 445–522Google Scholar
  142. 142.
    C.C. Lee, D.T. Lee, A new algorithm for on-line bin-packing. Technical report 83-03-FC-02, Department of Electrical Engineering and computer Science Northwestern University, Evanston, IL, 1983Google Scholar
  143. 143.
    C.C. Lee, D.T. Lee, A simple on-line bin-packing algorithm. J. ACM 32, 562–572 (1985) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\) zbMATHGoogle Scholar
  144. 144.
    H.W. Lenstra Jr., Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)Google Scholar
  145. 145.
    J.Y.-T. Leung, M. Dror, G.H. Young, A note on an open-end bin packing problem. J. Sched. 4, 201–207 (2001) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line},\mathit{open - end}\vert R_{A}^{\infty }\mathit{bound};FPTAS.\) MathSciNetzbMATHGoogle Scholar
  146. 146.
    R. Li, M. Yue, The proof of \(FFD(L) \leq 11/9\ {\it \text{OPT}}(L) + 7/9.\) Chin. Sci. Bull. 42, 1262–1265 (1997) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) Google Scholar
  147. 147.
    F.M. Liang, A lower bound for on-line bin packing. Inf. Process. Lett. 10, 76–79 (1980) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\) Google Scholar
  148. 148.
    W.-P. Liu, J.B. Sidney, Bin packing using semi-ordinal data. Oper. Res. Lett. 19, 101–104 (1996) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  149. 149.
    L. Lovász, M. Saks, W.T. Trotter, An on-line graph-coloring algorithm with sublinear performance ratio. Discret. Math. 75, 319–325 (1989)zbMATHGoogle Scholar
  150. 150.
    C.A. Mandal, P.P. Chakrabarti, S. Ghose, Complexity of fragmentable object bin packing and an application. Comput. Math. Appl. 35, 91–97 (1998) \(\bullet \ \ pack\vert \mathit{off - line}\vert \mathit{running - time}\vert controllable.\) MathSciNetzbMATHGoogle Scholar
  151. 151.
    R.L. Manyem, P. Salt, M.S. Visser, Approximation lower bounds in online lib bin packing and covering. J. Autom. Lang. Comb. 8, 663–674 (2003) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert controllable.\) MathSciNetzbMATHGoogle Scholar
  152. 152.
    W. Mao, Best-k-fit bin packing. Computing 50, 265–270 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  153. 153.
    W. Mao, Tight worst-case performance bounds for next-k-fit bin packing. SIAM J. Comput. 22, 46–56 (1993) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\) MathSciNetGoogle Scholar
  154. 154.
    C.U. Martel, A linear time bin-packing algorithm. Oper. Res. Lett. 4, 189–192 (1985) \(\bullet \ \ pack\vert \mathit{off - line},\mathit{linear - time}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  155. 155.
    N. Menakerman, R. Rom, Bin packing with item fragmentation, in WADS, Providence, RI. Lecture Notes in Computer Science, vol. 2125 (Springer, 2001), pp. 313–324 \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert controllable.\) Google Scholar
  156. 156.
    F.D. Murgolo, Anomalous behaviour in bin packing algorithms. Discrte. Appl. Math. 21, 229–243 (1988) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line},conservative.\) MathSciNetzbMATHGoogle Scholar
  157. 157.
    F.D. Murgolo, An efficient approximation scheme for variable-sized bin packing. SIAM J. Comput. 16, 149–161 (1988) \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS\vert \{B_{i}\}.\) MathSciNetGoogle Scholar
  158. 158.
    N. Naaman, R. Rom, Packet scheduling with fragmentation, in INFOCOM 2002, New York, NY (IEEE, 2002) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\vert controllable.\) Google Scholar
  159. 159.
    P. Ramanan, D.J. Brown, C.C. Lee, D.T. Lee, On-line bin packing in linear time. J. Algorithms 10, 305–326 (1989) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{linear - time}\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  160. 160.
    M.B. Richey, Improved bounds for harmonic-based bin packing algorithms. Discret. Appl. Math. 34, 203–227 (1991) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{linear - time}\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  161. 161.
    S. Sahni, Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)MathSciNetzbMATHGoogle Scholar
  162. 162.
    S.S. Seiden, An optimal online algorithm for bounded space variable-sized bin packing. SIAM J. Discret. Math. 14, 458–470 (2001) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert \{B_{i}\}.\) MathSciNetzbMATHGoogle Scholar
  163. 163.
    S.S. Seiden, On the online bin packing problem. J. ACM 49, 640–671 (2002) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}.\) MathSciNetGoogle Scholar
  164. 164.
    S.S. Seiden, R. van Stee, L. Epstein, New bounds for variable-sized online bin packing. SIAM J. Comput. 33, 455–469 (2003) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert \{B_{i}\}.\) MathSciNetGoogle Scholar
  165. 165.
    H. Shachnai, T. Tamir, Polynomial time approximation schemes for class-constrained packing problems. J. Sched. 4, 313–338 (2001) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert card(B) \leq k\mathit{colors}.\) MathSciNetzbMATHGoogle Scholar
  166. 166.
    H. Shachnai, T. Tamir, Tight bounds for online class-constrained packing. Theor. Comput. Sci. 321, 103–123 (2004) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\vert card(B) \leq k\mathit{colors}.\) MathSciNetzbMATHGoogle Scholar
  167. 167.
    H. Shachnai, O. Yehezkely, Fast asymptotic FPTAS for packing fragmentable items with costs, in FCT, Budapest, Hungary. Lecture Notes in Computer Science, vol. 4639 (Springer, 2007), pp. 482–493 \(\bullet \ \ pack\vert \mathit{off - line}\vert FPTAS\vert controllable.\) Google Scholar
  168. 168.
    H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 43, 81–98 (2008) \(\bullet \ \ pack\vert \mathit{off - line}\vert PTAS\vert controllable.\) MathSciNetzbMATHGoogle Scholar
  169. 169.
    D. Simchi-Levi, New worst-case results for the bin packing problem. Nav. Res. Logist. Q. 41, 579–585 (1994) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}\mathit{bound}.\) MathSciNetzbMATHGoogle Scholar
  170. 170.
    J. Sylvester, On a point in the theory of vulgar fractions. Am. J. Math. 3, 332–335 (1880)MathSciNetGoogle Scholar
  171. 171.
    A. van Vliet, An improved lower bound for on-line bin packing algorithms. Inf. Process. Lett. 43, 277–284 (1992) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) zbMATHGoogle Scholar
  172. 172.
    A. van Vliet, Lower and Upper Bounds for On-Line Bin Packing and Scheduling Heuristic. PhD thesis, Erasmus University, Rotterdam, 1995Google Scholar
  173. 173.
    A. van Vliet, On the asymptotic worst case behavoir of harmonic fit. J. Algorithms 20, 113–136 (1996) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }\mathit{bound}\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  174. 174.
    T.S. Wee, M.J. Magazine, Assembly line balancing as generalized bin packing. Oper. Res. Lett. 1, 56–58 (1982) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) zbMATHGoogle Scholar
  175. 175.
    G.J. Woeginger, Improved space for bounded-space, on-line bin-packing. SIAM J. Discret. Math. 6, 575–581 (1993) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{bounded - space}\vert R_{A}^{\infty }.\) MathSciNetzbMATHGoogle Scholar
  176. 176.
    E.C. Xavier, F.K. Miyazawa, The class constrained bin packing problem with applications to video-on-demand. Theor. Comput. Sci. 393, 240–259 (2008) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty },PTAS\vert card(B) \leq k.\) MathSciNetzbMATHGoogle Scholar
  177. 177.
    J. Xie, Z. Liu, New worst-case bound of first-fit heuristic for bin packing problem, Unpublished manuscript. \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}\mathit{bound}.\) Google Scholar
  178. 178.
    K. Xu, A Bin-Packing Problem with Item Sizes in the Interval \((0,\alpha ]\) for \(\alpha \leq \frac{1} {2}.\) PhD thesis, Chinese Academy of Sciences, Institute of Applied Mathematics, Beijing, China, 1993Google Scholar
  179. 179.
    K. Xu, The asymptotic worst-case behavior of the FFD heuristics for small items. J. Algorithms 37, 237–246 (2000) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }\vert s_{i} \leq 1/k.\) MathSciNetzbMATHGoogle Scholar
  180. 180.
    A.C.-C. Yao, New algorithms for bin packing. J. ACM 27, 207–227 (1980) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }.\) zbMATHGoogle Scholar
  181. 181.
    G. Yu, G. Zhang, Bin packing of selfish items, in WINE 2008, Shanghai, China. Lecture Notes in Computer Science, vol. 5385 (Springer, 2008) \(\bullet \ \ pack\vert repack\vert R_{A}^{\infty }\mathit{bounds}.\) Google Scholar
  182. 182.
    M. Yue, On the exact upper bound for the multifit processor scheduling algorithm. Ann. Oper. Res. 24, 233–259 (1991) \(\bullet \ \ mincap\vert \mathit{off - line}\vert R_{A}.\) Google Scholar
  183. 183.
    M. Yue, A simple proof of the inequality \(FFD(L) \leq \frac{11} {9} {\it \text{OPT}}(L) + 1\forall L\) for the FFD bin packing algorithm. Acta Math. Appl. Sin. 7, 321–331 (1991) \(\bullet \ \ pack\vert \mathit{off - line}\vert R_{A}^{\infty }.\) Google Scholar
  184. 184.
    G. Zhang, Tight worst-case performance bound for \(AFB_{k}\) bin packing. Technical report 15, Institute of Applied Mathematics. Academia Sinica, Beijng, China, 1994. This is the preliminary version of [187]Google Scholar
  185. 185.
    G. Zhang, Worst-case analysis of the FFH algorithm for on-line variable-sized bin paking. Computing 56, 165–172 (1996) \(\bullet \ \ pack\vert \mathit{on - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) MathSciNetzbMATHGoogle Scholar
  186. 186.
    G. Zhang, A new version of on-line variable-sized bin packing. Discret. Appl. Math. 72, 193–197 (1997) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}^{\infty }\vert \{B_{i}\}.\) zbMATHGoogle Scholar
  187. 187.
    G. Zhang, M. Yue, Tight performance bound for \(AFB_{k}\) bin packing. Acta Math. Appl. Sin. Engl. Ser. 13, 443–446 (1997) \(\bullet \ \ pack\vert \mathit{bounded - space}\vert R_{A}^{\infty }.\) Google Scholar
  188. 188.
    G. Zhang, X. Cai, C.K. Wong, Linear time-approximation algorithms for bin packing. Oper. Res. Lett. 26, 217–222 (2000) \(\bullet \ \ pack\vert \mathit{on - line},\mathit{off - line}\vert R_{A}.\) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceColumbia UniversityNew YorkNY, USA

Personalised recommendations