Handbook of Combinatorial Optimization pp 283-309 | Cite as
Algorithms and Metaheuristics for Combinatorial Matrices
- 6 Citations
- 5.6k Downloads
Abstract
Combinatorial matrices are matrices that satisfy certain combinatorial properties and typically give rise to extremely challenging search problems with thousands of variables. In this chapter we present a survey of some recent algorithms to search for some kinds of combinatorial matrices, with an emphasis to algorithms within the realm of optimization and metaheuristics. It is to be noted that for most kinds of combinatorial matrices there are several known infinite classes in the literature, but these infinite classes do not suffice to cover the entire spectra of possible orders of these matrices, therefore it is necessary to resort to computational and meta-heuristic algorithms.
Keywords
Particle Swarm Optimization Power Spectral Density Binary Sequence Hadamard Matrice Particle Swarm Optimization VariantRecommended Reading
- 1.V. Álvarez, J.A. Armario, M.D. Frau, P. Real, A genetic algorithm for cocyclic Hadamard matrices, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 3857 (Springer, Berlin, 2006), pp. 144–153CrossRefGoogle Scholar
- 2.D. Ashlock, Finding designs with genetic algorithms, in Computational and Constructive Design Theory. Mathematics and Its Applications, vol. 368 (Kluwer, Dordrecht, 1996), pp. 49–65CrossRefGoogle Scholar
- 3.T. Bäck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation (IOP Publishing/Oxford University Press, New York, 1997)CrossRefzbMATHGoogle Scholar
- 4.A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part i: background and development. Nat. Comput. 6(4), 467–484 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.L. Bömer, M. Antweiler, Periodic complementary binary sequences. IEEE Trans. Inf. Theory 36(6), 1487–1494 (1990)CrossRefzbMATHGoogle Scholar
- 7.E. Bonabeau, M. Dorigo, G. Théraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)zbMATHGoogle Scholar
- 8.P.B. Borwein, R.A. Ferguson, A complete description of Golay pairs for lengths up to 100. Math. Comput. 73(246), 967–985 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.A. Braeken, Cryptographic Properties of Functions and S-Boxes. PhD thesis, Katholieke Universiteit Leuven, Belgium, 2006Google Scholar
- 10.R.A. Brualdi, Combinatorial Matrix Classes. Encyclopedia of Mathematics and Its Applications, vol. 108 (Cambridge University Press, Cambridge, 2006)Google Scholar
- 11.R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications, vol. 39 (Cambridge University Press, Cambridge, 1991)Google Scholar
- 12.Y.W. Cheng, D.J. Street, W.H. Wilson, Two-stage generalized simulated annealing for the construction of change-over designs, in Designs, 2002. Mathematics and Its Applications, vol. 563 (Kluwer, Boston, 2003), pp. 69–79Google Scholar
- 13.M. Chiarandini, I.S. Kotsireas, C. Koukouvinos, L. Paquete, Heuristic algorithms for Hadamard matrices with two circulant cores. Theor. Comput. Sci. 407(1–3), 274–277 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.M. Clerc, Particle Swarm Optimization (ISTE Ltd, London/Newport Beach, 2006)CrossRefzbMATHGoogle Scholar
- 15.M. Clerc, J. Kennedy, The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
- 16.C.J. Colbourn, J.H. Dinitz (eds.), Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications (Boca Raton), 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2007)Google Scholar
- 17.J. Cousineau, I.S. Kotsireas, C. Koukouvinos, Genetic algorithms for orthogonal designs. Australas. J. Comb. 35, 263–272 (2006)MathSciNetzbMATHGoogle Scholar
- 18.R. Craigen, Boolean and ternary complementary pairs. J. Comb. Theory Ser. A 104(1), 1–16 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.W. de Launey, D. Flannery, Algebraic Design Theory. Mathematical Surveys and Monographs, vol. 175 (American Mathematical Society, Providence, 2011)Google Scholar
- 20.W. de Launey, D.A. Levin, A Fourier-analytic approach to counting partial Hadamard matrices. Cryptogr. Commun. 2(2), 307–334 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.D.Ž. Đ Doković, Two Hadamard matrices of order 956 of Goethals-Seidel type. Combinatorica 14(3), 375–377 (1994)MathSciNetCrossRefGoogle Scholar
- 22.D.Ž. Đ Doković, Equivalence classes and representatives of Golay sequences. Discret. Math. 189(1–3), 79–93 (1998)CrossRefGoogle Scholar
- 23.D.Ž. Đ Doković, Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–489 (2008)MathSciNetCrossRefGoogle Scholar
- 24.D.Ž. Đ Doković, Skew-Hadamard matrices of orders 188 and 388 exist. Int. Math. Forum 3(21–24), 1063–1068 (2008)MathSciNetGoogle Scholar
- 25.D.Ž. Đ Doković, Skew-Hadamard matrices of orders 436, 580, and 988 exist. J. Comb. Des. 16(6), 493–498 (2008)CrossRefGoogle Scholar
- 26.D.Ž. Đ Doković, On the base sequence conjecture. Discret. Math. 310(13–14), 1956–1964 (2010)CrossRefGoogle Scholar
- 27.D.Ž. Đ Doković, Classification of normal sequences. Int. J. Comb. Art. ID 937941, 15 (2011)Google Scholar
- 28.D.Ž.Đ Doković, Cyclic (v; r, s; λ) difference families with two base blocks and v ≤ 50. Ann. Comb. 15(2), 233–254 (2011)MathSciNetCrossRefGoogle Scholar
- 29.D.Ž. Đ Doković, I.S. Kotsireas, New results on D-optimal matrices. J. Comb. Des. 20(6), 278–289 (2012)CrossRefGoogle Scholar
- 30.M. Dorigo, Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy, 2002Google Scholar
- 31.M. Dorigo, G. Di Caro, The ant colony optimization meta–heuristic, in New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw-Hill, London, 1999), pp. 11–32Google Scholar
- 32.M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
- 33.M. Dorigo, T. Stützle, Ant Colony Optimization (MIT Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar
- 34.M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
- 35.R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in Proceedings Sixth Symposium on Micro Machine and Human Science (IEEE Service Center, Piscataway, 1995), pp. 39–43Google Scholar
- 36.S. Eliahou, M. Kervaire, B. Saffari, A new restriction on the lengths of Golay complementary sequences. J. Comb. Theory Ser. A 55(1), 49–59 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
- 37.A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, Hoboken, 2006)Google Scholar
- 38.T. Feng, Q. Xiang, Cyclotomic constructions of skew Hadamard difference sets. J. Comb. Theory Ser. A 119(1), 245–256 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 39.T. Feng, Q. Xiang, Strongly regular graphs from unions of cyclotomic classes. J. Comb. Theory Ser. B 102, 982–995 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 40.F. Fiedler, J. Jedwab, M.G. Parker, A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory 54(7), 3114–3129 (2008)MathSciNetCrossRefGoogle Scholar
- 41.F. Fiedler, J. Jedwab, M.G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences. J. Comb. Theory Ser. A 115(5), 753–776 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 42.R.J. Fletcher, M. Gysin, J. Seberry, Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Comb. 23, 75–86 (2001)MathSciNetzbMATHGoogle Scholar
- 43.A. Gavish, A. Lempel, On ternary complementary sequences. IEEE Trans. Inf. Theory 40(2), 522–526 (1994)CrossRefzbMATHGoogle Scholar
- 44.D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)zbMATHGoogle Scholar
- 45.S.W. Golomb, G. Gong, Signal Design for Good Correlation (Cambridge University Press, Cambridge, 2005). For wireless communication, cryptography, and radarCrossRefzbMATHGoogle Scholar
- 46.M.M. Gysin, Algorithms for Searching for Normal and Near-Yang Sequences. University of Wollongong, 1993. Thesis (MSc)–University of WollongongGoogle Scholar
- 47.M.M. Gysin, Combinatorial Designs, Sequences and Cryptography. PhD thesis, University of Wollongong, Wollongong, NSW, Australia, 1997Google Scholar
- 48.M. Hall Jr., Combinatorial Theory (Blaisdell Publishing Co./Ginn and Co., Waltham/Toronto/London, 1967)zbMATHGoogle Scholar
- 49.A. Hedayat, W.D. Wallis, Hadamard matrices and their applications. Ann. Stat. 6(6), 1184–1238 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
- 50.A. Heredia-Langner, W.M. Carlyle, D.C. Montgomery, C.M. Borror, G.C. Runger, Genetic algorithms for the construction of d-optimal designs. J. Qual. Technol. 35(1), 28–46 (2003)Google Scholar
- 51.H.H. Hoos, T. Stützle, Stochastic Local Search: Foundations & Applications (Elsevier/Morgan Kaufmann, Oxford/San Francisco, 2004)Google Scholar
- 52.K.J. Horadam, Hadamard Matrices and Their Applications (Princeton University Press, Princeton, 2007)zbMATHGoogle Scholar
- 53.K.J. Horadam, Hadamard matrices and their applications: progress 2007–2010. Cryptogr. Commun. 2(2), 129–154 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 54.Y.J. Ionin, M.S. Shrikhande, Combinatorics of Symmetric Designs. New Mathematical Monographs, vol. 5 (Cambridge University Press, Cambridge, 2006)Google Scholar
- 55.J.A. John, D. Whitaker, Construction of resolvable row-column designs using simulated annealing. Aust. J. Stat. 35(2), 237–245 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
- 56.J. Kennedy, R.C. Eberhart, Swarm Intelligence (Morgan Kaufmann Publishers, San Francisco, 2001)Google Scholar
- 57.H. Kharaghani, B. Tayfeh-Rezaie, A Hadamard matrix of order 428. J. Comb. Des. 13(6), 435–440 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 58.S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
- 59.I.S. Kotsireas, C. Koukouvinos, Genetic algorithms for the construction of Hadamard matrices with two circulant cores. J. Discret. Math. Sci. Cryptogr. 8(2), 241–250 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 60.I.S. Kotsireas, C. Koukouvinos, Hadamard ideals and Hadamard matrices from two circulant submatrices. J. Comb. Math. Comb. Comput. 61, 97–110 (2007)MathSciNetzbMATHGoogle Scholar
- 61.I.S. Kotsireas, P.M. Pardalos, D-optimal matrices via quadratic integer optimization. J. Heuristics (2012) (to appear)Google Scholar
- 62.I.S. Kotsireas, C. Koukouvinos, K.E. Parsopoulos, M.N. Vrahatis, Unified particle swarm optimization for Hadamard matrices of Williamson type, in Proceedings of the 1st International Conference on Mathematical Aspects of Computer and Information Sciences (MACIS 2006), Beijing, China, 2006, pp. 113–121Google Scholar
- 63.I.S. Kotsireas, C. Koukouvinos, J. Seberry, Hadamard ideals and Hadamard matrices with two circulant cores. Eur. J. Combin. 27(5), 658–668 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
- 64.I.S. Kotsireas, C. Koukouvinos, J. Seberry, Weighing matrices and string sorting. Ann. Comb. 13(3), 305–313 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 65.I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, An efficient string sorting algorithm for weighing matrices of small weight. Optim. Lett. 4(1), 29–36 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 66.I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, O.V. Shylo, Periodic complementary binary sequences and combinatorial optimization algorithms. J. Comb. Optim. 20(1), 63–75 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 67.I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, A modified power spectral density test applied to weighing matrices with small weight. J. Comb. Optim. 22(4), 873–881 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 68.I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, D.E. Simos, Competent genetic algorithms for weighing matrices. J. Comb. Optim. 24, 508–525 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 69.I.S. Kotsireas, K.E. Parsopoulos, G.S. Piperagkas, M.N. Vrahatis, Ant–based approaches for solving autocorrelation problems, in Eighth International Conference on Swarm Intelligence (ANTS 2012), Lecture Notes in Computer Science (LNCS), Brussels, Belgium, Vol. 7461, pp. 220–227 Springer (2012)Google Scholar
- 70.P.C. Li, Combining genetic algorithms and simulated annealing for constructing lotto designs. J. Comb. Math. Comb. Comput. 45, 109–121 (2003)zbMATHGoogle Scholar
- 71.J. Matyas, Random optimization. Autom. Remote Control 26, 244–251 (1965)MathSciNetzbMATHGoogle Scholar
- 72.R.K. Meyer, C.J. Nachtsheim, Constructing exact D-optimal experimental designs by simulated annealing. Am. J. Math. Manag. Sci. 8(3–4), 329–359 (1988)MathSciNetzbMATHGoogle Scholar
- 73.L.B. Morales, Constructing difference families through an optimization approach: six new BIBDs. J. Comb. Des. 8(4), 261–273 (2000)CrossRefzbMATHGoogle Scholar
- 74.L.B. Morales, Constructing some PBIBD(2)s by tabu search algorithm. J. Comb. Math. Comb. Comput. 43, 65–82 (2002)zbMATHGoogle Scholar
- 75.L.B. Morales, Constructing cyclic PBIBD(2)s through an optimization approach: thirty-two new cyclic designs. J. Comb. Des. 13(5), 377–387 (2005)CrossRefzbMATHGoogle Scholar
- 76.L.B. Morales, Constructing 1-rotational NRDFs through an optimization approach: new (46,9,8), (51,10,9) and (55,9,8)-NRBDs. J. Stat. Plann. Inference 139(1), 62–68 (2009)CrossRefzbMATHGoogle Scholar
- 77.K.J. Nurmela, P.R.J. Östergård, Upper bounds for covering designs by simulated annealing, in Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1993, vol. 96, pp. 93–111Google Scholar
- 78.K.E. Parsopoulos, M.N. Vrahatis, Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1(2–3), 235–306 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
- 79.K.E. Parsopoulos, M.N. Vrahatis, UPSO: a unified particle swarm optimization scheme, in Proceedings of the International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2004). Lecture Series on Computer and Computational Sciences, vol. 1 (VSP International Science Publishers, Zeist, 2004), pp. 868–873Google Scholar
- 80.K.E. Parsopoulos, M.N. Vrahatis, Unified particle swarm optimization for tackling operations research problems, in Proceedings of the IEEE 2005 Swarm Intelligence Symposium, Pasadena, CA, USA, 2005, pp. 53–59Google Scholar
- 81.K.E. Parsopoulos, M.N. Vrahatis, Studying the performance of unified particle swarm optimization on the single machine total weighted tardiness problem, in ed. by A. Sattar, B.H. Kang Lecture Notes in Artificial Intelligence (LNAI), vol. 4304 (Springer, 2006), pp. 760–769Google Scholar
- 82.K.E. Parsopoulos, M.N. Vrahatis, Parameter selection and adaptation in unified particle swarm optimization. Math. Comput. Model. 46(1–2), 198–213 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 83.K.E. Parsopoulos, M.N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications (Information Science Publishing (IGI Global), Hershey, 2010)CrossRefGoogle Scholar
- 84.C.B. Pheatt, Construction of D-Optimal Experimental Designs Using Genetic Algorithms. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–Illinois Institute of TechnologyGoogle Scholar
- 85.G.S. Piperagkas, C. Voglis, V.A. Tatsis, K.E. Parsopoulos, K. Skouri, Applying PSO and DE on multi–item inventory problem with supplier selection, in The 9th Metaheuristics International Conference (MIC 2011), Udine, Italy, 2011, pp. 359–368Google Scholar
- 86.G.S. Piperagkas, I. Konstantaras, K. Skouri, K.E. Parsopoulos, Solving the stochastic dynamic lot–sizing problem through nature–inspired heuristics. Comput. Oper. Res. 39(7), 1555–1565 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 87.C.R. Reeves, J.E. Rowe, Genetic Algorithms: Principles and Perspectives. Operations Research/Computer Science Interfaces Series, vol. 20 (Kluwer, Boston, 2003). A guide to GA theoryGoogle Scholar
- 88.H.J. Ryser, Combinatorial Mathematics. The Carus Mathematical Monographs, vol. 14 (The Mathematical Association of America, Buffalo, 1963)Google Scholar
- 89.J. Sawada, Generating bracelets in constant amortized time. SIAM J. Comput. 31(1), 259–268 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 90.J. Sawada, A fast algorithm to generate necklaces with fixed content. Theor. Comput. Sci. 301(1–3), 477–489 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 91.J. Seberry, X. Zhang, Y. Zheng, Cryptographic Boolean functions via group Hadamard matrices. Australas. J. Comb. 10, 131–145 (1994)MathSciNetzbMATHGoogle Scholar
- 92.J. Seberry, X. Zhang, Y. Zheng, Pitfalls in designing substitution boxes (extended abstract), in Proceedings of the 14th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’94 (Springer, London, 1994), pp. 383–396Google Scholar
- 93.J. Seberry, B.J. Wysocki, T.A. Wysocki, On some applications of Hadamard matrices. Metrika 62(2–3), 221–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 94.D.R. Stinson, Combinatorial Designs, Constructions and Analysis (Springer, New York, 2004)zbMATHGoogle Scholar
- 95.T. Stützle, H.H. Hoos, MAX MIN ant system. Future Gener. Comput. Syst. 16, 889–914 (2000)CrossRefGoogle Scholar
- 96.P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in Proceedings of the IEEE Congress on Evolutionary Computation, Washington, D.C., USA, 1999, pp. 1958–1961Google Scholar
- 97.M.N. Syed, I.S. Kotsireas, P.M. Pardalos, D-optimal designs: a mathematical programming approach using cyclotomic cosets. Informatica 22(4), 577–587 (2011)MathSciNetzbMATHGoogle Scholar
- 98.I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 99.Y. Tsaig, D.L. Donoho, Extensions of compressed sensing. Signal Process. 86(3), 549–571 (2006)CrossRefzbMATHGoogle Scholar
- 100.C. Voglis, K.E. Parsopoulos, D.G. Papageorgiou, I.E. Lagaris, M.N. Vrahatis, MEMPSODE: a global optimization software based on hybridization of population–based algorithms and local searches. Comput. Phys. Commun. 183(5), 1139–1154 (2012)CrossRefGoogle Scholar
- 101.J. Wallis, On supplementary difference sets. Aequ. Math. 8, 242–257 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
- 102.J. Wallis, A note on supplementary difference sets. Aequ. Math. 10, 46–49 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
- 103.M. Yamada, Supplementary difference sets and Jacobi sums. Discret. Math. 103(1), 75–90 (1992)CrossRefzbMATHGoogle Scholar
- 104.R.K. Yarlagadda, J.E. Hershey, Hadamard Matrix Analysis and Synthesis. The Kluwer International Series in Engineering and Computer Science, vol. 383 (Kluwer, Boston, 1997). With applications to communications and signal/image processingGoogle Scholar