Algorithms and Metaheuristics for Combinatorial Matrices

Reference work entry


Combinatorial matrices are matrices that satisfy certain combinatorial properties and typically give rise to extremely challenging search problems with thousands of variables. In this chapter we present a survey of some recent algorithms to search for some kinds of combinatorial matrices, with an emphasis to algorithms within the realm of optimization and metaheuristics. It is to be noted that for most kinds of combinatorial matrices there are several known infinite classes in the literature, but these infinite classes do not suffice to cover the entire spectra of possible orders of these matrices, therefore it is necessary to resort to computational and meta-heuristic algorithms.


Particle Swarm Optimization Power Spectral Density Binary Sequence Hadamard Matrice Particle Swarm Optimization Variant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Recommended Reading

  1. 1.
    V. Álvarez, J.A. Armario, M.D. Frau, P. Real, A genetic algorithm for cocyclic Hadamard matrices, in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 3857 (Springer, Berlin, 2006), pp. 144–153CrossRefGoogle Scholar
  2. 2.
    D. Ashlock, Finding designs with genetic algorithms, in Computational and Constructive Design Theory. Mathematics and Its Applications, vol. 368 (Kluwer, Dordrecht, 1996), pp. 49–65CrossRefGoogle Scholar
  3. 3.
    T. Bäck, D. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation (IOP Publishing/Oxford University Press, New York, 1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part i: background and development. Nat. Comput. 6(4), 467–484 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. Banks, J. Vincent, C. Anyakoha, A review of particle swarm optimization. Part ii: hybridisation, combinatorial, multicriteria and constrained optimization, and indicative applications. Nat. Comput. 7(1), 109–124 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. Bömer, M. Antweiler, Periodic complementary binary sequences. IEEE Trans. Inf. Theory 36(6), 1487–1494 (1990)CrossRefzbMATHGoogle Scholar
  7. 7.
    E. Bonabeau, M. Dorigo, G. Théraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999)zbMATHGoogle Scholar
  8. 8.
    P.B. Borwein, R.A. Ferguson, A complete description of Golay pairs for lengths up to 100. Math. Comput. 73(246), 967–985 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Braeken, Cryptographic Properties of Functions and S-Boxes. PhD thesis, Katholieke Universiteit Leuven, Belgium, 2006Google Scholar
  10. 10.
    R.A. Brualdi, Combinatorial Matrix Classes. Encyclopedia of Mathematics and Its Applications, vol. 108 (Cambridge University Press, Cambridge, 2006)Google Scholar
  11. 11.
    R.A. Brualdi, H.J. Ryser, Combinatorial Matrix Theory. Encyclopedia of Mathematics and Its Applications, vol. 39 (Cambridge University Press, Cambridge, 1991)Google Scholar
  12. 12.
    Y.W. Cheng, D.J. Street, W.H. Wilson, Two-stage generalized simulated annealing for the construction of change-over designs, in Designs, 2002. Mathematics and Its Applications, vol. 563 (Kluwer, Boston, 2003), pp. 69–79Google Scholar
  13. 13.
    M. Chiarandini, I.S. Kotsireas, C. Koukouvinos, L. Paquete, Heuristic algorithms for Hadamard matrices with two circulant cores. Theor. Comput. Sci. 407(1–3), 274–277 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Clerc, Particle Swarm Optimization (ISTE Ltd, London/Newport Beach, 2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    M. Clerc, J. Kennedy, The particle swarm–explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)CrossRefGoogle Scholar
  16. 16.
    C.J. Colbourn, J.H. Dinitz (eds.), Handbook of Combinatorial Designs. Discrete Mathematics and Its Applications (Boca Raton), 2nd edn. (Chapman & Hall/CRC, Boca Raton, 2007)Google Scholar
  17. 17.
    J. Cousineau, I.S. Kotsireas, C. Koukouvinos, Genetic algorithms for orthogonal designs. Australas. J. Comb. 35, 263–272 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    R. Craigen, Boolean and ternary complementary pairs. J. Comb. Theory Ser. A 104(1), 1–16 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    W. de Launey, D. Flannery, Algebraic Design Theory. Mathematical Surveys and Monographs, vol. 175 (American Mathematical Society, Providence, 2011)Google Scholar
  20. 20.
    W. de Launey, D.A. Levin, A Fourier-analytic approach to counting partial Hadamard matrices. Cryptogr. Commun. 2(2), 307–334 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    D.Ž. Đ Doković, Two Hadamard matrices of order 956 of Goethals-Seidel type. Combinatorica 14(3), 375–377 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    D.Ž. Đ Doković, Equivalence classes and representatives of Golay sequences. Discret. Math. 189(1–3), 79–93 (1998)CrossRefGoogle Scholar
  23. 23.
    D.Ž. Đ Doković, Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–489 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.Ž. Đ Doković, Skew-Hadamard matrices of orders 188 and 388 exist. Int. Math. Forum 3(21–24), 1063–1068 (2008)MathSciNetGoogle Scholar
  25. 25.
    D.Ž. Đ Doković, Skew-Hadamard matrices of orders 436, 580, and 988 exist. J. Comb. Des. 16(6), 493–498 (2008)CrossRefGoogle Scholar
  26. 26.
    D.Ž. Đ Doković, On the base sequence conjecture. Discret. Math. 310(13–14), 1956–1964 (2010)CrossRefGoogle Scholar
  27. 27.
    D.Ž. Đ Doković, Classification of normal sequences. Int. J. Comb. Art. ID 937941, 15 (2011)Google Scholar
  28. 28.
    D.Ž.Đ Doković, Cyclic (v; r, s; λ) difference families with two base blocks and v ≤ 50. Ann. Comb. 15(2), 233–254 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    D.Ž. Đ Doković, I.S. Kotsireas, New results on D-optimal matrices. J. Comb. Des. 20(6), 278–289 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Dorigo, Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di Milano, Italy, 2002Google Scholar
  31. 31.
    M. Dorigo, G. Di Caro, The ant colony optimization meta–heuristic, in New Ideas in Optimization, ed. by D. Corne, M. Dorigo, F. Glover (McGraw-Hill, London, 1999), pp. 11–32Google Scholar
  32. 32.
    M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  33. 33.
    M. Dorigo, T. Stützle, Ant Colony Optimization (MIT Press, Cambridge, 2004)CrossRefzbMATHGoogle Scholar
  34. 34.
    M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)CrossRefGoogle Scholar
  35. 35.
    R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in Proceedings Sixth Symposium on Micro Machine and Human Science (IEEE Service Center, Piscataway, 1995), pp. 39–43Google Scholar
  36. 36.
    S. Eliahou, M. Kervaire, B. Saffari, A new restriction on the lengths of Golay complementary sequences. J. Comb. Theory Ser. A 55(1), 49–59 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence (Wiley, Hoboken, 2006)Google Scholar
  38. 38.
    T. Feng, Q. Xiang, Cyclotomic constructions of skew Hadamard difference sets. J. Comb. Theory Ser. A 119(1), 245–256 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    T. Feng, Q. Xiang, Strongly regular graphs from unions of cyclotomic classes. J. Comb. Theory Ser. B 102, 982–995 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    F. Fiedler, J. Jedwab, M.G. Parker, A framework for the construction of Golay sequences. IEEE Trans. Inf. Theory 54(7), 3114–3129 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    F. Fiedler, J. Jedwab, M.G. Parker, A multi-dimensional approach to the construction and enumeration of Golay complementary sequences. J. Comb. Theory Ser. A 115(5), 753–776 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    R.J. Fletcher, M. Gysin, J. Seberry, Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Comb. 23, 75–86 (2001)MathSciNetzbMATHGoogle Scholar
  43. 43.
    A. Gavish, A. Lempel, On ternary complementary sequences. IEEE Trans. Inf. Theory 40(2), 522–526 (1994)CrossRefzbMATHGoogle Scholar
  44. 44.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989)zbMATHGoogle Scholar
  45. 45.
    S.W. Golomb, G. Gong, Signal Design for Good Correlation (Cambridge University Press, Cambridge, 2005). For wireless communication, cryptography, and radarCrossRefzbMATHGoogle Scholar
  46. 46.
    M.M. Gysin, Algorithms for Searching for Normal and Near-Yang Sequences. University of Wollongong, 1993. Thesis (MSc)–University of WollongongGoogle Scholar
  47. 47.
    M.M. Gysin, Combinatorial Designs, Sequences and Cryptography. PhD thesis, University of Wollongong, Wollongong, NSW, Australia, 1997Google Scholar
  48. 48.
    M. Hall Jr., Combinatorial Theory (Blaisdell Publishing Co./Ginn and Co., Waltham/Toronto/London, 1967)zbMATHGoogle Scholar
  49. 49.
    A. Hedayat, W.D. Wallis, Hadamard matrices and their applications. Ann. Stat. 6(6), 1184–1238 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    A. Heredia-Langner, W.M. Carlyle, D.C. Montgomery, C.M. Borror, G.C. Runger, Genetic algorithms for the construction of d-optimal designs. J. Qual. Technol. 35(1), 28–46 (2003)Google Scholar
  51. 51.
    H.H. Hoos, T. Stützle, Stochastic Local Search: Foundations & Applications (Elsevier/Morgan Kaufmann, Oxford/San Francisco, 2004)Google Scholar
  52. 52.
    K.J. Horadam, Hadamard Matrices and Their Applications (Princeton University Press, Princeton, 2007)zbMATHGoogle Scholar
  53. 53.
    K.J. Horadam, Hadamard matrices and their applications: progress 2007–2010. Cryptogr. Commun. 2(2), 129–154 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Y.J. Ionin, M.S. Shrikhande, Combinatorics of Symmetric Designs. New Mathematical Monographs, vol. 5 (Cambridge University Press, Cambridge, 2006)Google Scholar
  55. 55.
    J.A. John, D. Whitaker, Construction of resolvable row-column designs using simulated annealing. Aust. J. Stat. 35(2), 237–245 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    J. Kennedy, R.C. Eberhart, Swarm Intelligence (Morgan Kaufmann Publishers, San Francisco, 2001)Google Scholar
  57. 57.
    H. Kharaghani, B. Tayfeh-Rezaie, A Hadamard matrix of order 428. J. Comb. Des. 13(6), 435–440 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    I.S. Kotsireas, C. Koukouvinos, Genetic algorithms for the construction of Hadamard matrices with two circulant cores. J. Discret. Math. Sci. Cryptogr. 8(2), 241–250 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    I.S. Kotsireas, C. Koukouvinos, Hadamard ideals and Hadamard matrices from two circulant submatrices. J. Comb. Math. Comb. Comput. 61, 97–110 (2007)MathSciNetzbMATHGoogle Scholar
  61. 61.
    I.S. Kotsireas, P.M. Pardalos, D-optimal matrices via quadratic integer optimization. J. Heuristics (2012) (to appear)Google Scholar
  62. 62.
    I.S. Kotsireas, C. Koukouvinos, K.E. Parsopoulos, M.N. Vrahatis, Unified particle swarm optimization for Hadamard matrices of Williamson type, in Proceedings of the 1st International Conference on Mathematical Aspects of Computer and Information Sciences (MACIS 2006), Beijing, China, 2006, pp. 113–121Google Scholar
  63. 63.
    I.S. Kotsireas, C. Koukouvinos, J. Seberry, Hadamard ideals and Hadamard matrices with two circulant cores. Eur. J. Combin. 27(5), 658–668 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    I.S. Kotsireas, C. Koukouvinos, J. Seberry, Weighing matrices and string sorting. Ann. Comb. 13(3), 305–313 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, An efficient string sorting algorithm for weighing matrices of small weight. Optim. Lett. 4(1), 29–36 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, O.V. Shylo, Periodic complementary binary sequences and combinatorial optimization algorithms. J. Comb. Optim. 20(1), 63–75 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, A modified power spectral density test applied to weighing matrices with small weight. J. Comb. Optim. 22(4), 873–881 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    I.S. Kotsireas, C. Koukouvinos, P.M. Pardalos, D.E. Simos, Competent genetic algorithms for weighing matrices. J. Comb. Optim. 24, 508–525 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    I.S. Kotsireas, K.E. Parsopoulos, G.S. Piperagkas, M.N. Vrahatis, Ant–based approaches for solving autocorrelation problems, in Eighth International Conference on Swarm Intelligence (ANTS 2012), Lecture Notes in Computer Science (LNCS), Brussels, Belgium, Vol. 7461, pp. 220–227 Springer (2012)Google Scholar
  70. 70.
    P.C. Li, Combining genetic algorithms and simulated annealing for constructing lotto designs. J. Comb. Math. Comb. Comput. 45, 109–121 (2003)zbMATHGoogle Scholar
  71. 71.
    J. Matyas, Random optimization. Autom. Remote Control 26, 244–251 (1965)MathSciNetzbMATHGoogle Scholar
  72. 72.
    R.K. Meyer, C.J. Nachtsheim, Constructing exact D-optimal experimental designs by simulated annealing. Am. J. Math. Manag. Sci. 8(3–4), 329–359 (1988)MathSciNetzbMATHGoogle Scholar
  73. 73.
    L.B. Morales, Constructing difference families through an optimization approach: six new BIBDs. J. Comb. Des. 8(4), 261–273 (2000)CrossRefzbMATHGoogle Scholar
  74. 74.
    L.B. Morales, Constructing some PBIBD(2)s by tabu search algorithm. J. Comb. Math. Comb. Comput. 43, 65–82 (2002)zbMATHGoogle Scholar
  75. 75.
    L.B. Morales, Constructing cyclic PBIBD(2)s through an optimization approach: thirty-two new cyclic designs. J. Comb. Des. 13(5), 377–387 (2005)CrossRefzbMATHGoogle Scholar
  76. 76.
    L.B. Morales, Constructing 1-rotational NRDFs through an optimization approach: new (46,9,8), (51,10,9) and (55,9,8)-NRBDs. J. Stat. Plann. Inference 139(1), 62–68 (2009)CrossRefzbMATHGoogle Scholar
  77. 77.
    K.J. Nurmela, P.R.J. Östergård, Upper bounds for covering designs by simulated annealing, in Proceedings of the Twenty-fourth Southeastern International Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, 1993, vol. 96, pp. 93–111Google Scholar
  78. 78.
    K.E. Parsopoulos, M.N. Vrahatis, Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1(2–3), 235–306 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    K.E. Parsopoulos, M.N. Vrahatis, UPSO: a unified particle swarm optimization scheme, in Proceedings of the International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2004). Lecture Series on Computer and Computational Sciences, vol. 1 (VSP International Science Publishers, Zeist, 2004), pp. 868–873Google Scholar
  80. 80.
    K.E. Parsopoulos, M.N. Vrahatis, Unified particle swarm optimization for tackling operations research problems, in Proceedings of the IEEE 2005 Swarm Intelligence Symposium, Pasadena, CA, USA, 2005, pp. 53–59Google Scholar
  81. 81.
    K.E. Parsopoulos, M.N. Vrahatis, Studying the performance of unified particle swarm optimization on the single machine total weighted tardiness problem, in ed. by A. Sattar, B.H. Kang Lecture Notes in Artificial Intelligence (LNAI), vol. 4304 (Springer, 2006), pp. 760–769Google Scholar
  82. 82.
    K.E. Parsopoulos, M.N. Vrahatis, Parameter selection and adaptation in unified particle swarm optimization. Math. Comput. Model. 46(1–2), 198–213 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    K.E. Parsopoulos, M.N. Vrahatis, Particle Swarm Optimization and Intelligence: Advances and Applications (Information Science Publishing (IGI Global), Hershey, 2010)CrossRefGoogle Scholar
  84. 84.
    C.B. Pheatt, Construction of D-Optimal Experimental Designs Using Genetic Algorithms. ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–Illinois Institute of TechnologyGoogle Scholar
  85. 85.
    G.S. Piperagkas, C. Voglis, V.A. Tatsis, K.E. Parsopoulos, K. Skouri, Applying PSO and DE on multi–item inventory problem with supplier selection, in The 9th Metaheuristics International Conference (MIC 2011), Udine, Italy, 2011, pp. 359–368Google Scholar
  86. 86.
    G.S. Piperagkas, I. Konstantaras, K. Skouri, K.E. Parsopoulos, Solving the stochastic dynamic lot–sizing problem through nature–inspired heuristics. Comput. Oper. Res. 39(7), 1555–1565 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  87. 87.
    C.R. Reeves, J.E. Rowe, Genetic Algorithms: Principles and Perspectives. Operations Research/Computer Science Interfaces Series, vol. 20 (Kluwer, Boston, 2003). A guide to GA theoryGoogle Scholar
  88. 88.
    H.J. Ryser, Combinatorial Mathematics. The Carus Mathematical Monographs, vol. 14 (The Mathematical Association of America, Buffalo, 1963)Google Scholar
  89. 89.
    J. Sawada, Generating bracelets in constant amortized time. SIAM J. Comput. 31(1), 259–268 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    J. Sawada, A fast algorithm to generate necklaces with fixed content. Theor. Comput. Sci. 301(1–3), 477–489 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  91. 91.
    J. Seberry, X. Zhang, Y. Zheng, Cryptographic Boolean functions via group Hadamard matrices. Australas. J. Comb. 10, 131–145 (1994)MathSciNetzbMATHGoogle Scholar
  92. 92.
    J. Seberry, X. Zhang, Y. Zheng, Pitfalls in designing substitution boxes (extended abstract), in Proceedings of the 14th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’94 (Springer, London, 1994), pp. 383–396Google Scholar
  93. 93.
    J. Seberry, B.J. Wysocki, T.A. Wysocki, On some applications of Hadamard matrices. Metrika 62(2–3), 221–239 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    D.R. Stinson, Combinatorial Designs, Constructions and Analysis (Springer, New York, 2004)zbMATHGoogle Scholar
  95. 95.
    T. Stützle, H.H. Hoos, MAX MIN ant system. Future Gener. Comput. Syst. 16, 889–914 (2000)CrossRefGoogle Scholar
  96. 96.
    P.N. Suganthan, Particle swarm optimizer with neighborhood operator, in Proceedings of the IEEE Congress on Evolutionary Computation, Washington, D.C., USA, 1999, pp. 1958–1961Google Scholar
  97. 97.
    M.N. Syed, I.S. Kotsireas, P.M. Pardalos, D-optimal designs: a mathematical programming approach using cyclotomic cosets. Informatica 22(4), 577–587 (2011)MathSciNetzbMATHGoogle Scholar
  98. 98.
    I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85, 317–325 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  99. 99.
    Y. Tsaig, D.L. Donoho, Extensions of compressed sensing. Signal Process. 86(3), 549–571 (2006)CrossRefzbMATHGoogle Scholar
  100. 100.
    C. Voglis, K.E. Parsopoulos, D.G. Papageorgiou, I.E. Lagaris, M.N. Vrahatis, MEMPSODE: a global optimization software based on hybridization of population–based algorithms and local searches. Comput. Phys. Commun. 183(5), 1139–1154 (2012)CrossRefGoogle Scholar
  101. 101.
    J. Wallis, On supplementary difference sets. Aequ. Math. 8, 242–257 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    J. Wallis, A note on supplementary difference sets. Aequ. Math. 10, 46–49 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    M. Yamada, Supplementary difference sets and Jacobi sums. Discret. Math. 103(1), 75–90 (1992)CrossRefzbMATHGoogle Scholar
  104. 104.
    R.K. Yarlagadda, J.E. Hershey, Hadamard Matrix Analysis and Synthesis. The Kluwer International Series in Engineering and Computer Science, vol. 383 (Kluwer, Boston, 1997). With applications to communications and signal/image processingGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physics and Computer ScienceWilfrid Laurier University, WaterlooONCanada

Personalised recommendations