Advertisement

Impacts of Climatic Changes on Biogeochemical Cycling in Terrestrial Ecosystems

  • Dafeng HuiEmail author
  • Hanqin Tian
  • Yiqi Luo
Reference work entry

Abstract

Global climate change has profound effects on biogeochemical cycling in terrestrial ecosystems. This chapter summarizes the existing state of knowledge on how climate change affects biogeochemical cycling, specifically carbon cycling, as the carbon cycling has long been recognized as important for understanding climate change. The review draws largely on knowledge gained from manipulated experiments, modeling, and meta-analysis studies. This chapter starts with a brief description of current changes in several climate factors such as atmospheric carbon dioxide (CO2) concentration, temperature, precipitation, and ozone (O3) and their effects on terrestrial ecosystems. Then approaches commonly applied in global change research such as natural observation, experiment, ecosystem modeling, and meta-analysis are described. The advantages and disadvantages of these approaches and general procedures are also summarized. The impacts of global change such as elevated CO2, global warming, and changes in precipitation and O3 on carbon cycling in different terrestrial ecosystems are further synthesized. In addition, issues related to global climate change such as single factor versus multiple factor studies, graduate versus step increase experiments, and inverse modeling are briefly discussed. At the end of the chapter, some recommendations for future global change research in terrestrial ecosystems are provided.

Keywords

Soil Respiration Terrestrial Ecosystem Gross Primary Productivity Ecosystem Carbon National Ecological Observatory Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Dr. Toshio Suzuki for his constructive comments and suggestions that improved the presentation of this chapter. Our work has been supported by grants from the Office of Science (BER), U.S. Department of Energy, grant DE-FG03-99ER62800, and National Science Foundation (DBI0923371 and DBI0933958).

References

  1. 1.
    Intergovernmental Panel on Climate Change (IPCC) (2007) Climate change 2007. IPCC, Geneva, www.ipcc.ch
  2. 2.
    Rustad LE (2008) The response of terrestrial ecosystems to global climate change: towards an integrated approach. Sci Total Environ 404:222–235CrossRefGoogle Scholar
  3. 3.
    Luo YQ, Hui D, Zhang D (2006) Elevated carbon dioxide stimulates net accumulations of carbon and nitrogen in terrestrial ecosystems: a meta-analysis. Ecology 87:53–63CrossRefGoogle Scholar
  4. 4.
    Rustad LE, Campbell JL, Marion GM et al (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126:543–562CrossRefGoogle Scholar
  5. 5.
    Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712CrossRefGoogle Scholar
  6. 6.
    Fay PA, Carlisle JD, Knapp AK et al (2003) Productivity responses to altered rainfall patterns in a C4-dominated grassland. Oecologia 137:245–251CrossRefGoogle Scholar
  7. 7.
    Weltzin JF, Loik ME, Schwinning S et al (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952CrossRefGoogle Scholar
  8. 8.
    Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794CrossRefGoogle Scholar
  9. 9.
    Mack MC, Schuur EAG, Bret-Harte MS et al (2004) Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature 431:440–443CrossRefGoogle Scholar
  10. 10.
    Luo Y, Hui D (2008) Gradual global environmental change in the real world and step manipulative experiments in laboratory and field: the need of inverse analysis. In: Miao SL, Carstenn S, Nungesser M (eds) Real world ecology: large-scale and long-term case studies and methods. Springer, New YorkGoogle Scholar
  11. 11.
    Cao M, Woodward FI (1998) Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393:249–252CrossRefGoogle Scholar
  12. 12.
    Tian H, Melillo JM, Kicklighter D et al (1998) Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396:664–667CrossRefGoogle Scholar
  13. 13.
    Hui D, Luo Y (2004) Evaluation of soil CO2 production and transport in Duke Forest using a process-based modeling approach. Glob Biogeochem Cycles 18:GB4029. doi:10.1029/2004GB002297CrossRefGoogle Scholar
  14. 14.
    Wan S, Hui D, Luo Y (2001) Fire effects on ecosystem nitrogen pools and dynamics: a meta-analysis. Ecol Appl 11:1349–1365CrossRefGoogle Scholar
  15. 15.
    Lei XD, Peng CH, Tian DL, Sun JF (2007) Meta-analysis and its application in global change research. Chin Sci Bull 52(3):289–302CrossRefGoogle Scholar
  16. 16.
    Nemani RR, Keeling CD, Hashimoto H et al (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563CrossRefGoogle Scholar
  17. 17.
    Baldocchi D, Falge E, Wilson K (2001) A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agric For Meteorol 107:1–27CrossRefGoogle Scholar
  18. 18.
    Valentini R, Matteucci G, Dolman AJ et al (2000) Respiration as the main determinant of carbon balance in European forests. Nature 404:861–865CrossRefGoogle Scholar
  19. 19.
    Lewis SG, Lopez-Gonzalez B, Sonke K et al (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006CrossRefGoogle Scholar
  20. 20.
    Keller M, Schimel DS, Hargrove WW, Hoffman FM (2008) A continental strategy for the National Ecological Observatory Network. Front Ecol Environ 6:282–284CrossRefGoogle Scholar
  21. 21.
    Hendrey GR, Ellsworth DS, Lewin KF et al (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Glob Change Biol 5:293–309CrossRefGoogle Scholar
  22. 22.
    Luo Y, Wan S, Hui D, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625CrossRefGoogle Scholar
  23. 23.
    Hui D, Sims DA, Johnson DW, Cheng W, Luo Y (2002) Effects of gradual versus step increase in carbon dioxide on Plantago photosynthesis and growth in a microcosm study. Environ Exp Bot 47:51–66CrossRefGoogle Scholar
  24. 24.
    Rustad LE (2006) From transient to steady-state response of ecosystems to atmospheric enrichment and global climate change: conceptual challenges and need for an integrated approach. Plant Ecol 182:43–62Google Scholar
  25. 25.
    Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H et al (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176CrossRefGoogle Scholar
  26. 26.
    Harte J, Shaw R (1995) Shifting dominance within a montane vegetation community – results of a climate warming experiment. Science 267:876–880CrossRefGoogle Scholar
  27. 27.
    Wan S, Luo Y, Wallace L (2002) Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Glob Change Biol 8:754–768CrossRefGoogle Scholar
  28. 28.
    Kimball BA (2005) Theory and performance of an infrared heater for ecosystem warming. Glob Change Biol 11:2041–2056Google Scholar
  29. 29.
    Norby RJ, Edwards NT, Riggs JS et al (1997) Temperature-controlled open-top chambers for global change research. Glob Change Biol 3:259–267CrossRefGoogle Scholar
  30. 30.
    Sherry RA, Zhou X, Gu S et al (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci USA 104:198–202CrossRefGoogle Scholar
  31. 31.
    Norby RJ, Luo YQ (2004) Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytol 162:281–293CrossRefGoogle Scholar
  32. 32.
    Luo Y, Gerten D, le Maire G et al (2008) Modelled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol 14:1986–1999CrossRefGoogle Scholar
  33. 33.
    Hui D, Luo Y, Katul G (2003) Partitioning interannual variability in net ecosystem exchange into climatic variability and functional change. Tree Physiol 23:433–442CrossRefGoogle Scholar
  34. 34.
    Shen W, Reynolds JF, Hui D (2009) Responses of dryland soil respiration and soil carbon pool size to abrupt versus gradual and individual versus combined changes in soil temperature, precipitation, and atmospheric [CO2]: a simulation analysis. Glob Change Biol 15:2274–2294CrossRefGoogle Scholar
  35. 35.
    Hanson PJ, Amthor JS, Wullschleger S, Wilson K, Grant R, Hartley A, Hui D, Hunt R Jr, Johnson DW, Kimball J, King A, Luo Y, McNulty S, Sun G, Thornton PE, Wang S, Williams M, Cushmann RM (2004) Carbon and water cycle simulations for an upland oak forest using 13 stand-level models: intermodel comparisons and evaluations against independent measurements. Ecol Monogr 74(3):443–489CrossRefGoogle Scholar
  36. 36.
    Liu M, Tian H, Chen G, Ren W, Zhang C, Liu J (2008) Effects of land use and land cover change on evapotranspiration and water yield in China during the 20th century. J Am Water Resour As (JAWRA) 44:1193–1207. doi:10.1111/j.1752-1688.2008.00243CrossRefGoogle Scholar
  37. 37.
    Ren W, Tian H, Liu M et al (2007) Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J Geophys Res 112:D22S09. doi:10.1029/2007JD008521CrossRefGoogle Scholar
  38. 38.
    Tian H, Xu X, Zhang C, Ren W, Chen G, Liu M, Lu D, Pan S (2008) Forecasting and assessing the large-scale and long-term impacts of global environmental change on terrestrial ecosystems in the United States and China using an integrated regional modeling approach. In: Miao S, Carstenn S, Nungesser M (eds) Real world ecology: large-scale and long-term case studies and methods. Springer, New YorkGoogle Scholar
  39. 39.
    Xu T, White L, Hui D, Luo Y (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Glob Biogeochem Cycles 20:GB2007. doi:10.1029/2005GB002468CrossRefGoogle Scholar
  40. 40.
    Curtis PS, Wang X (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia 113:299–313CrossRefGoogle Scholar
  41. 41.
    Ainsworth EA, Rosenberg MS, Wang X (2007) Meta-analysis: the past, present and future. New Phytol 176:742–745CrossRefGoogle Scholar
  42. 42.
    Ainsworth EA, Long SP (2005) What have we learned from fifteen years of Free Air Carbon Dioxide Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372CrossRefGoogle Scholar
  43. 43.
    Hungate BA, van Groenigen K-J, Six J et al (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Change Biol 8(15):2020–2034CrossRefGoogle Scholar
  44. 44.
    Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci USA 104:19686–19690CrossRefGoogle Scholar
  45. 45.
    Gifford RM, Lambers H, Morison JIL (1985) Respiration of crop species under CO2 enrichment. Physiol Plant 63:351–356CrossRefGoogle Scholar
  46. 46.
    McGuire AD, Melillo JM, Joyce LA (1995) The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annu Rev Ecol Syst 26:473–503CrossRefGoogle Scholar
  47. 47.
    Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry and decomposition: a synthesis. Oecologia 127:153–165CrossRefGoogle Scholar
  48. 48.
    Klironomos JN, Allen MF, Rillig MC et al (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433:621–624CrossRefGoogle Scholar
  49. 49.
    Polley HW, Mielnick PC, Dugas WA, Johnson HB, Sanabria J (2006) Increasing CO2 from subambient to elevated concentrations increases grassland respiration per unit of net carbon fixation. Glob Change Biol 12:1390–1399CrossRefGoogle Scholar
  50. 50.
    White A, Cannell MGR, Friend AD (1999) Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Glob Environ Change 9:S21–S30CrossRefGoogle Scholar
  51. 51.
    Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satelliteand surface data. Global Biogeochem Cycles 7:811–841CrossRefGoogle Scholar
  52. 52.
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  53. 53.
    Friedlingstein P et al (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate 19:3337–3353CrossRefGoogle Scholar
  54. 54.
    Zhou X, Weng ES, Luo YQ (2008) Modeling patterns of nonlinearity in ecosystem responses to temperature, CO2, and precipitation changes. Ecol Appl 18:453–466CrossRefGoogle Scholar
  55. 55.
    Randerson JT, Hoffman FM, Thornton PE et al (2009) Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob Change Biol 15:2462–2484. doi:10.1111/j.1365-2486.2009.01912.xCrossRefGoogle Scholar
  56. 56.
    Friend AD (2010) Terrestrial plant production and climate change. J Exp Bot 61(5):1293–1309. doi:10.1093/jxb/erq019CrossRefGoogle Scholar
  57. 57.
    Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628CrossRefGoogle Scholar
  58. 58.
    Wang X, Curtis P (2002) A meta-analytical test of elevated CO2 effects on plant respiration. Plant Ecol 161:251–261CrossRefGoogle Scholar
  59. 59.
    Wand JK, Strain BR (1999) Elevated CO2 studies: past, present and future. Tree Physiol 19:211–220Google Scholar
  60. 60.
    Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles 7:811–841CrossRefGoogle Scholar
  61. 61.
    Jastrow JD, Miller RM, Matamala R et al (2005) Elevated atmospheric carbon dioxide increases soil carbon. Glob Change Biol 11:2057–2064CrossRefGoogle Scholar
  62. 62.
    Wookey PA, Welker JM, Parsons AN, Press MC, CallaghanTV LJA (1994) Differential growth, allocation and photosynthetic responses of Polygonum viviparum to simulated environmental change at a high arctic polar semidesert. Oikos 70:131–139CrossRefGoogle Scholar
  63. 63.
    Beerling DJ (1999) Long-term responses of boreal vegetation to global change: an experimental and modeling investigation. Glob Change Biol 5:55–74CrossRefGoogle Scholar
  64. 64.
    Zhou X, Liu X, Wallace LL, Luo Y (2007) Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. J Integr Plant Biol 49:270–281CrossRefGoogle Scholar
  65. 65.
    Gunderson CA, Norby RJ, Wullschleger SD (2000) Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acersaccharum: laboratory and field evidence. Tree Physiol 20:87–96Google Scholar
  66. 66.
    Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625CrossRefGoogle Scholar
  67. 67.
    Saleska SR, Jarte J, Torn MS (1999) The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow. Glob Change Biol 5:125–141CrossRefGoogle Scholar
  68. 68.
    Eliasson PE, McMurtrie RE, Pepper DA, Strömgren M, Linder S, Ågren GI (2005) The response of heterotrophic CO2 flux to soil warming. Glob Change Biol 11:167–181CrossRefGoogle Scholar
  69. 69.
    Dorrepaal E, Toer S, van Logtestijn RSP, Swart E, van de Weg MJ, Callaghan TV, Averts R (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619CrossRefGoogle Scholar
  70. 70.
    Xia J, Han Y, Zhang Z, Zhang Z, Wan S (2009) Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences 6:1361–1370CrossRefGoogle Scholar
  71. 71.
    Wan S, Xia J, Liu W, Niu S (2009) Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology 90:2700–2710CrossRefGoogle Scholar
  72. 72.
    Day TA, Ruhland CT, Grobe CW, Xiong F (1999) Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reduction in the field. Oecologia 119:24–35CrossRefGoogle Scholar
  73. 73.
    Farnsworth EJ, Nũnez-Farfan J, Careaga SA, Bazzaz FA (1995) Phenology and growth of three temperate forest life forms in response to artificial soil warming. J Ecol 83:967–977CrossRefGoogle Scholar
  74. 74.
    Rykbost KA, Boersma L, Mack HJ, Schmisseur WE (1975) Yield response of soil warming: agronomic crops. Agron J 67:733–738CrossRefGoogle Scholar
  75. 75.
    Bergh J, Linder S (1999) Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands. Glob Change Biol 5:245–253CrossRefGoogle Scholar
  76. 76.
    Shaver GR, Johnson LC, Cades DH, Murray G, Laundre JA et al (1998) Biomass and CO2 flux in wet sedge tundras: response to nutrients, temperature, and light. Ecol Monogr 68:75–99Google Scholar
  77. 77.
    Billings WD, Luken JO, Mortensen DA, Peterson KM (1982) Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53:7–11CrossRefGoogle Scholar
  78. 78.
    Ineson P, Benham DG, Poskitt J, Harrison AF, Taylor K, Woods C (1998) Effects of climate change on nitrogen dynamics in upland soils. II. A soil warming study. Glob Change Biol 4:153–162CrossRefGoogle Scholar
  79. 79.
    Marchand FL, Nijs I, de Boeck HJ, Mertens S, Beyens L (2004) Increased turnover but little change in the carbon balance of high-arctic tundra exposed to whole growing season warming. Arct Antarct Alp Res 36:298–307CrossRefGoogle Scholar
  80. 80.
    Johnson LC, Shaver GR, Cades DH, Rastetter E, Nadelhoffer K et al (2000) Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81:453–469Google Scholar
  81. 81.
    Saleska SR, Shaw MR, Fisher ML, Dunne JA, Still CJ et al (2002) Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Glob Biogeochem Cycles 16:1055CrossRefGoogle Scholar
  82. 82.
    Cox PM, Betts RA, Jones CD et al (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  83. 83.
    Huntingford C, Cox PM, Lenton TM (2000) Contrasting responses of a simple terrestrial ecosystem model to global change. Ecol Model 134(1):41–58CrossRefGoogle Scholar
  84. 84.
    Zhou T, Luo YQ (2008) Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous USA. Glob Biogeochem Cycles 22:GB3032. doi:10.1029/2007GB002939CrossRefGoogle Scholar
  85. 85.
    Tian HQ, Chen GS, Liu ML et al (2010) Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. For Ecol Manage 259:1311–1327CrossRefGoogle Scholar
  86. 86.
    Piao S, Ciais P, Friedlingstein P et al (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52CrossRefGoogle Scholar
  87. 87.
    Arft AM, WalkerMD GJ, Alatalo JM, Bret-Harte MS et al (1999) Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol Monogr 69:491–511Google Scholar
  88. 88.
    Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346CrossRefGoogle Scholar
  89. 89.
    Raich JW, Russell AE, Kitayama K, Parton WJ, Vitousek PM (2006) Temperature influences carbon accumulation in moist tropical forests. Ecology 87:76–87CrossRefGoogle Scholar
  90. 90.
    Zhou X, Sherry RA, An Y, Wallace LL, Luo YQ (2006) Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Glob Biogeochem Cycles 20:GB1003. doi:10.1029/2005GB002526CrossRefGoogle Scholar
  91. 91.
    Knapp AK, Briggs JM, Koelliker JK (2001) Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4:19–28CrossRefGoogle Scholar
  92. 92.
    Zepp RG, Erickson DJI, Paul ND, Sulzberger B (2007) Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem Photobiol Sci 6:286–300CrossRefGoogle Scholar
  93. 93.
    Wan SQ, Norby RJ, Ledford J et al (2007) Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob Change Biol 13:2411–2424CrossRefGoogle Scholar
  94. 94.
    Zavaleta ES, Shaw MR, Chiariello NR et al (2003) Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proc Nat Acad Sci USA 100:7650–7654CrossRefGoogle Scholar
  95. 95.
    Gerten D, Luo YQ, le Maire G et al (2008) Modelled effects of precipitation on ecosystem carbon and water dynamics in different climatic zones. Glob Change Biol 14:2365–2379CrossRefGoogle Scholar
  96. 96.
    Melillo JM, McGuire AD, Kicklighter DW, Moore B III, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240CrossRefGoogle Scholar
  97. 97.
    Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Change Biol 14:1642–1650. doi:10.1111/j.1365-2486.2008.01594.xCrossRefGoogle Scholar
  98. 98.
    Feng Z, Kobayashi K, Ainsworth EA (2008) Impacts of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Change Biol 14:2696–2708Google Scholar
  99. 99.
    Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmos Environ 43:1510–1519CrossRefGoogle Scholar
  100. 100.
    Medvigy D, Wofsy SC, Mugger JW, Moorcroft PR (2010) Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proc Nat Acad Sci USA 107:8275–8280CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesTennessee State UniversityNashvilleUSA
  2. 2.International Center for Climate and Global Change ResearchSchool of Forestry and Wildlife Sciences, Auburn UniversityAuburnUSA
  3. 3.Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA

Personalised recommendations